File size: 10,990 Bytes
f561f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

from configs import constants as _C

import torch
import numpy as np
from torch.nn import functional as F

from ...utils import transforms

__all__ = ['VideoAugmentor', 'SMPLAugmentor', 'SequenceAugmentor', 'CameraAugmentor']


num_joints = _C.KEYPOINTS.NUM_JOINTS
class VideoAugmentor():
    def __init__(self, cfg, train=True):
        self.train = train
        self.l = cfg.DATASET.SEQLEN + 1
        self.aug_dict = torch.load(_C.KEYPOINTS.COCO_AUG_DICT)        

    def get_jitter(self, ):
        """Guassian jitter modeling."""
        jittering_noise = torch.normal(
            mean=torch.zeros((self.l, num_joints, 3)),
            std=self.aug_dict['jittering'].reshape(1, num_joints, 1).expand(self.l, -1, 3)
        ) * _C.KEYPOINTS.S_JITTERING
        return jittering_noise

    def get_lfhp(self, ):
        """Low-frequency high-peak noise modeling."""
        def get_peak_noise_mask():
            peak_noise_mask = torch.rand(self.l, num_joints).float() * self.aug_dict['pmask'].squeeze(0)
            peak_noise_mask = peak_noise_mask < _C.KEYPOINTS.S_PEAK_MASK
            return peak_noise_mask

        peak_noise_mask = get_peak_noise_mask()
        peak_noise = peak_noise_mask.float().unsqueeze(-1).repeat(1, 1, 3)
        peak_noise = peak_noise * torch.randn(3) * self.aug_dict['peak'].reshape(1, -1, 1) * _C.KEYPOINTS.S_PEAK
        return peak_noise

    def get_bias(self, ):
        """Bias noise modeling."""
        bias_noise = torch.normal(
            mean=torch.zeros((num_joints, 3)), std=self.aug_dict['bias'].reshape(num_joints, 1)
        ).unsqueeze(0) * _C.KEYPOINTS.S_BIAS
        return bias_noise
    
    def get_mask(self, scale=None):
        """Mask modeling."""

        if scale is None:
            scale = _C.KEYPOINTS.S_MASK
        # Per-frame and joint
        mask = torch.rand(self.l, num_joints) < scale
        visible = (~mask).clone()
        for child in range(num_joints):
            parent = _C.KEYPOINTS.TREE[child]
            if parent == -1: continue
            if isinstance(parent, list):
                visible[:, child] *= (visible[:, parent[0]] * visible[:, parent[1]])
            else:
                visible[:, child] *= visible[:, parent]
        mask = (~visible).clone()

        return mask

    def __call__(self, keypoints):
        keypoints += self.get_bias() + self.get_jitter() + self.get_lfhp()
        return keypoints


class SMPLAugmentor():
    noise_scale = 1e-2

    def __init__(self, cfg, augment=True):
        self.n_frames = cfg.DATASET.SEQLEN
        self.augment = augment

    def __call__(self, target):
        if not self.augment:
            # Only add initial frame augmentation
            if not 'init_pose' in target:
                target['init_pose'] = target['pose'][:1] @ self.get_initial_pose_augmentation()
            return target

        n_frames = target['pose'].shape[0]

        # Global rotation
        rmat = self.get_global_augmentation()
        target['pose'][:, 0] = rmat @ target['pose'][:, 0]
        target['transl'] = (rmat.squeeze() @ target['transl'].T).T

        # Shape
        shape_noise = self.get_shape_augmentation(n_frames)
        target['betas'] = target['betas'] + shape_noise

        # Initial frames mis-prediction
        target['init_pose'] = target['pose'][:1] @ self.get_initial_pose_augmentation()

        return target

    def get_global_augmentation(self, ):
        """Global coordinate augmentation. Random rotation around y-axis"""
        
        angle_y = torch.rand(1) * 2 * np.pi * float(self.augment)
        aa = torch.tensor([0.0, angle_y, 0.0]).float().unsqueeze(0)
        rmat = transforms.axis_angle_to_matrix(aa)

        return rmat

    def get_shape_augmentation(self, n_frames):
        """Shape noise modeling."""
        
        shape_noise = torch.normal(
            mean=torch.zeros((1, 10)),
            std=torch.ones((1, 10)) * 0.1 * float(self.augment)).expand(n_frames, 10)

        return shape_noise

    def get_initial_pose_augmentation(self, ):
        """Initial frame pose noise modeling. Random rotation around all joints."""
        
        euler = torch.normal(
            mean=torch.zeros((24, 3)),
            std=torch.ones((24, 3))
        ) * self.noise_scale #* float(self.augment)
        rmat = transforms.axis_angle_to_matrix(euler)

        return rmat.unsqueeze(0)


class SequenceAugmentor:
    """Augment the play speed of the motion sequence"""
    l_factor = 1.5
    def __init__(self, l_default):
        self.l_default = l_default

    def __call__(self, target):
        l = torch.randint(low=int(self.l_default / self.l_factor), high=int(self.l_default * self.l_factor), size=(1, ))

        pose = transforms.matrix_to_rotation_6d(target['pose'])
        resampled_pose = F.interpolate(
            pose[:l].permute(1, 2, 0), self.l_default, mode='linear', align_corners=True
        ).permute(2, 0, 1)
        resampled_pose = transforms.rotation_6d_to_matrix(resampled_pose)

        transl = target['transl'].unsqueeze(1)
        resampled_transl = F.interpolate(
            transl[:l].permute(1, 2, 0), self.l_default, mode='linear', align_corners=True
        ).squeeze(0).T
        
        target['pose'] = resampled_pose
        target['transl'] = resampled_transl
        target['betas'] = target['betas'][:self.l_default]
        
        return target
    
    
class CameraAugmentor:
    rx_factor = np.pi/8
    ry_factor = np.pi/4
    rz_factor = np.pi/8
    
    pitch_std = np.pi/8
    pitch_mean = np.pi/36
    roll_std = np.pi/24
    t_factor = 1
    
    tz_scale = 10
    tz_min = 2
    
    motion_prob = 0.75
    interp_noise = 0.2
    
    def __init__(self, l, w, h, f):
        self.l = l
        self.w = w
        self.h = h
        self.f = f
        self.fov_tol = 1.2 * (0.5 ** 0.5)
        
    def __call__(self, target):
        
        R, T = self.create_camera(target)
        
        if np.random.rand() < self.motion_prob:
            R = self.create_rotation_move(R)
            T = self.create_translation_move(T)
        
        return self.apply(target, R, T)
        
    def create_camera(self, target):
        """Create the initial frame camera pose"""
        yaw = np.random.rand() * 2 * np.pi
        pitch = np.random.normal(scale=self.pitch_std) + self.pitch_mean
        roll = np.random.normal(scale=self.roll_std)
        
        yaw_rm = transforms.axis_angle_to_matrix(torch.tensor([[0, yaw, 0]]).float())
        pitch_rm = transforms.axis_angle_to_matrix(torch.tensor([[pitch, 0, 0]]).float())
        roll_rm = transforms.axis_angle_to_matrix(torch.tensor([[0, 0, roll]]).float())
        R = (roll_rm @ pitch_rm @ yaw_rm)
        
        # Place people in the scene
        tz = np.random.rand() * self.tz_scale + self.tz_min
        max_d = self.w * tz / self.f / 2
        tx = np.random.normal(scale=0.25) * max_d
        ty = np.random.normal(scale=0.25) * max_d
        dist = torch.tensor([tx, ty, tz]).float()
        T = dist - torch.matmul(R, target['transl'][0])
        
        return R.repeat(self.l, 1, 1), T.repeat(self.l, 1)
    
    def create_rotation_move(self, R):
        """Create rotational move for the camera"""
        
        # Create final camera pose
        rx = np.random.normal(scale=self.rx_factor)
        ry = np.random.normal(scale=self.ry_factor)
        rz = np.random.normal(scale=self.rz_factor)
        Rf = R[0] @ transforms.axis_angle_to_matrix(torch.tensor([rx, ry, rz]).float())
        
        # Inbetweening two poses
        Rs = torch.stack((R[0], Rf))
        rs = transforms.matrix_to_rotation_6d(Rs).numpy() 
        rs_move = self.noisy_interpolation(rs)
        R_move = transforms.rotation_6d_to_matrix(torch.from_numpy(rs_move).float())
        return R_move
    
    def create_translation_move(self, T):
        """Create translational move for the camera"""
        
        # Create final camera position
        tx = np.random.normal(scale=self.t_factor)
        ty = np.random.normal(scale=self.t_factor)
        tz = np.random.normal(scale=self.t_factor)
        Ts = np.array([[0, 0, 0], [tx, ty, tz]])
        
        T_move = self.noisy_interpolation(Ts)
        T_move = torch.from_numpy(T_move).float()
        return T_move + T
        
    def noisy_interpolation(self, data):
        """Non-linear interpolation with noise"""
        
        dim = data.shape[-1]
        output = np.zeros((self.l, dim))
        
        linspace = np.stack([np.linspace(0, 1, self.l) for _ in range(dim)])
        noise = (linspace[0, 1] - linspace[0, 0]) * self.interp_noise
        space_noise = np.stack([np.random.uniform(-noise, noise, self.l - 2) for _ in range(dim)])
        
        linspace[:, 1:-1] = linspace[:, 1:-1] + space_noise
        for i in range(dim):
            output[:, i] = np.interp(linspace[i], np.array([0., 1.,]), data[:, i])
        return output
    
    def apply(self, target, R, T):
        target['R'] = R
        target['T'] = T
        
        # Recompute the translation
        transl_cam = torch.matmul(R, target['transl'].unsqueeze(-1)).squeeze(-1)
        transl_cam = transl_cam + T
        if transl_cam[..., 2].min() < 0.5:      # If the person is too close to the camera
            transl_cam[..., 2] = transl_cam[..., 2] + (1.0 - transl_cam[..., 2].min())
        
        # If the subject is away from the field of view, put the camera behind
        fov = torch.div(transl_cam[..., :2], transl_cam[..., 2:]).abs()
        if fov.max() > self.fov_tol:
            t_max = transl_cam[fov.max(1)[0].max(0)[1].item()]
            z_trg = t_max[:2].abs().max(0)[0] / self.fov_tol
            pad = z_trg - t_max[2]
            transl_cam[..., 2] = transl_cam[..., 2] + pad
        
        target['transl_cam'] = transl_cam
        
        # Transform world coordinate to camera coordinate
        target['pose_root'] = target['pose'][:, 0].clone()
        target['pose'][:, 0] = R @ target['pose'][:, 0]  # pose
        target['init_pose'][:, 0] = R[:1] @ target['init_pose'][:, 0]  # init pose
        
        # Compute angular velocity
        cam_angvel = transforms.matrix_to_rotation_6d(R[:-1] @ R[1:].transpose(-1, -2))
        cam_angvel = cam_angvel - torch.tensor([[1, 0, 0, 0, 1, 0]]).to(cam_angvel) # Normalize
        target['cam_angvel'] = cam_angvel * 3e1 # assume 30-fps
        
        if 'kp3d' in target:
            target['kp3d'] = torch.matmul(R, target['kp3d'].transpose(1, 2)).transpose(1, 2) + target['transl_cam'].unsqueeze(1)
        
        return target