File size: 8,142 Bytes
f561f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import time
import os.path as osp
from glob import glob
from collections import defaultdict

import torch
import imageio
import numpy as np
from smplx import SMPL
from loguru import logger
from progress.bar import Bar

from configs import constants as _C
from configs.config import parse_args
from lib.data.dataloader import setup_eval_dataloader
from lib.models import build_network, build_body_model
from lib.eval.eval_utils import (
    compute_error_accel,
    batch_align_by_pelvis,
    batch_compute_similarity_transform_torch,
)
from lib.utils import transforms
from lib.utils.utils import prepare_output_dir
from lib.utils.utils import prepare_batch
from lib.utils.imutils import avg_preds

try:
    from lib.vis.renderer import Renderer
    _render = True
except:
    print("PyTorch3D is not properly installed! Cannot render the SMPL mesh")
    _render = False


m2mm = 1e3
@torch.no_grad()
def main(cfg, args):
    torch.backends.cuda.matmul.allow_tf32 = False
    torch.backends.cudnn.allow_tf32 = False
    
    logger.info(f'GPU name -> {torch.cuda.get_device_name()}')
    logger.info(f'GPU feat -> {torch.cuda.get_device_properties("cuda")}')    
    
    # ========= Dataloaders ========= #
    eval_loader = setup_eval_dataloader(cfg, '3dpw', 'test', cfg.MODEL.BACKBONE)
    logger.info(f'Dataset loaded')
    
    # ========= Load WHAM ========= #
    smpl_batch_size = cfg.TRAIN.BATCH_SIZE * cfg.DATASET.SEQLEN
    smpl = build_body_model(cfg.DEVICE, smpl_batch_size)
    network = build_network(cfg, smpl)
    network.eval()
    
    # Build SMPL models with each gender
    smpl = {k: SMPL(_C.BMODEL.FLDR, gender=k).to(cfg.DEVICE) for k in ['male', 'female', 'neutral']}
    
    # Load vertices -> joints regression matrix to evaluate
    J_regressor_eval = torch.from_numpy(
        np.load(_C.BMODEL.JOINTS_REGRESSOR_H36M)
    )[_C.KEYPOINTS.H36M_TO_J14, :].unsqueeze(0).float().to(cfg.DEVICE)
    pelvis_idxs = [2, 3]
    
    accumulator = defaultdict(list)
    bar = Bar('Inference', fill='#', max=len(eval_loader))
    with torch.no_grad():
        for i in range(len(eval_loader)):
            # Original batch
            batch = eval_loader.dataset.load_data(i, False)
            x, inits, features, kwargs, gt = prepare_batch(batch, cfg.DEVICE, cfg.TRAIN.STAGE=='stage2')
            
            if cfg.FLIP_EVAL:
                flipped_batch = eval_loader.dataset.load_data(i, True)
                f_x, f_inits, f_features, f_kwargs, _ = prepare_batch(flipped_batch, cfg.DEVICE, cfg.TRAIN.STAGE=='stage2')
            
                # Forward pass with flipped input
                flipped_pred = network(f_x, f_inits, f_features, **f_kwargs)
            
            # Forward pass with normal input
            pred = network(x, inits, features, **kwargs)
            
            if cfg.FLIP_EVAL:
                # Merge two predictions
                flipped_pose, flipped_shape = flipped_pred['pose'].squeeze(0), flipped_pred['betas'].squeeze(0)
                pose, shape = pred['pose'].squeeze(0), pred['betas'].squeeze(0)
                flipped_pose, pose = flipped_pose.reshape(-1, 24, 6), pose.reshape(-1, 24, 6)
                avg_pose, avg_shape = avg_preds(pose, shape, flipped_pose, flipped_shape)
                avg_pose = avg_pose.reshape(-1, 144)

                # Refine trajectory with merged prediction
                network.pred_pose = avg_pose.view_as(network.pred_pose)
                network.pred_shape = avg_shape.view_as(network.pred_shape)
                pred = network.forward_smpl(**kwargs)
            
            # <======= Build predicted SMPL
            pred_output = smpl['neutral'](body_pose=pred['poses_body'], 
                                          global_orient=pred['poses_root_cam'], 
                                          betas=pred['betas'].squeeze(0), 
                                          pose2rot=False)
            pred_verts = pred_output.vertices.cpu()
            pred_j3d = torch.matmul(J_regressor_eval, pred_output.vertices).cpu()
            # =======>
            
            # <======= Build groundtruth SMPL
            target_output = smpl[batch['gender']](
                body_pose=transforms.rotation_6d_to_matrix(gt['pose'][0, :, 1:]),
                global_orient=transforms.rotation_6d_to_matrix(gt['pose'][0, :, :1]),
                betas=gt['betas'][0],
                pose2rot=False)
            target_verts = target_output.vertices.cpu()
            target_j3d = torch.matmul(J_regressor_eval, target_output.vertices).cpu()
            # =======>
            
            # <======= Compute performance of the current sequence
            pred_j3d, target_j3d, pred_verts, target_verts = batch_align_by_pelvis(
                [pred_j3d, target_j3d, pred_verts, target_verts], pelvis_idxs
            )
            S1_hat = batch_compute_similarity_transform_torch(pred_j3d, target_j3d)
            pa_mpjpe = torch.sqrt(((S1_hat - target_j3d) ** 2).sum(dim=-1)).mean(dim=-1).numpy() * m2mm
            mpjpe = torch.sqrt(((pred_j3d - target_j3d) ** 2).sum(dim=-1)).mean(dim=-1).numpy() * m2mm
            pve = torch.sqrt(((pred_verts - target_verts) ** 2).sum(dim=-1)).mean(dim=-1).numpy() * m2mm
            accel = compute_error_accel(joints_pred=pred_j3d, joints_gt=target_j3d)[1:-1]
            accel = accel * (30 ** 2)       # per frame^s to per s^2
            # =======>
            
            summary_string = f'{batch["vid"]} | PA-MPJPE: {pa_mpjpe.mean():.1f}   MPJPE: {mpjpe.mean():.1f}   PVE: {pve.mean():.1f}'
            bar.suffix = summary_string
            bar.next()
            
            # <======= Accumulate the results over entire sequences
            accumulator['pa_mpjpe'].append(pa_mpjpe)
            accumulator['mpjpe'].append(mpjpe)
            accumulator['pve'].append(pve)
            accumulator['accel'].append(accel)
            # =======>
            
            # <======= (Optional) Render the prediction
            if not (_render and args.render):
                # Skip if PyTorch3D is not installed or rendering argument is not parsed.
                continue
            
            # Save path
            viz_pth = osp.join('output', 'visualization')
            os.makedirs(viz_pth, exist_ok=True)
            
            # Build Renderer
            width, height = batch['cam_intrinsics'][0][0, :2, -1].numpy() * 2
            focal_length = batch['cam_intrinsics'][0][0, 0, 0].item()
            renderer = Renderer(width, height, focal_length, cfg.DEVICE, smpl['neutral'].faces)
            
            # Get images and writer
            frame_list = batch['frame_id'][0].numpy()
            imname_list = sorted(glob(osp.join(_C.PATHS.THREEDPW_PTH, 'imageFiles', batch['vid'][:-2], '*.jpg')))
            writer = imageio.get_writer(osp.join(viz_pth, batch['vid'] + '.mp4'), 
                                        mode='I', format='FFMPEG', fps=30, macro_block_size=1)
            
            # Skip the invalid frames
            for i, frame in enumerate(frame_list):
                image = imageio.imread(imname_list[frame])
                
                # NOTE: pred['verts'] is different from pred_verts as we substracted offset from SMPL mesh.
                # Check line 121 in lib/models/smpl.py
                vertices = pred['verts_cam'][i] + pred['trans_cam'][[i]]
                image = renderer.render_mesh(vertices, image)
                writer.append_data(image)
            writer.close()
            # =======>
            
    for k, v in accumulator.items():
        accumulator[k] = np.concatenate(v).mean()

    print('')
    log_str = 'Evaluation on 3DPW, '
    log_str += ' '.join([f'{k.upper()}: {v:.4f},'for k,v in accumulator.items()])
    logger.info(log_str)
    
if __name__ == '__main__':
    cfg, cfg_file, args = parse_args(test=True)
    cfg = prepare_output_dir(cfg, cfg_file)
    
    main(cfg, args)