File size: 12,696 Bytes
c87d1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import cv2
import torch
import random
import numpy as np
from . import transforms

def do_augmentation(scale_factor=0.2, trans_factor=0.1):
    scale = random.uniform(1.2 - scale_factor, 1.2 + scale_factor)
    trans_x = random.uniform(-trans_factor, trans_factor)
    trans_y = random.uniform(-trans_factor, trans_factor)
    
    return scale, trans_x, trans_y

def get_transform(center, scale, res, rot=0):
    """Generate transformation matrix."""
    # res: (height, width), (rows, cols)
    crop_aspect_ratio = res[0] / float(res[1])
    h = 200 * scale
    w = h / crop_aspect_ratio
    t = np.zeros((3, 3))
    t[0, 0] = float(res[1]) / w
    t[1, 1] = float(res[0]) / h
    t[0, 2] = res[1] * (-float(center[0]) / w + .5)
    t[1, 2] = res[0] * (-float(center[1]) / h + .5)
    t[2, 2] = 1
    if not rot == 0:
        rot = -rot  # To match direction of rotation from cropping
        rot_mat = np.zeros((3, 3))
        rot_rad = rot * np.pi / 180
        sn, cs = np.sin(rot_rad), np.cos(rot_rad)
        rot_mat[0, :2] = [cs, -sn]
        rot_mat[1, :2] = [sn, cs]
        rot_mat[2, 2] = 1
        # Need to rotate around center
        t_mat = np.eye(3)
        t_mat[0, 2] = -res[1] / 2
        t_mat[1, 2] = -res[0] / 2
        t_inv = t_mat.copy()
        t_inv[:2, 2] *= -1
        t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
    return t


def transform(pt, center, scale, res, invert=0, rot=0):
    """Transform pixel location to different reference."""
    t = get_transform(center, scale, res, rot=rot)
    if invert:
        t = np.linalg.inv(t)
    new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
    new_pt = np.dot(t, new_pt)
    return np.array([round(new_pt[0]), round(new_pt[1])], dtype=int) + 1


def crop_cliff(img, center, scale, res):
    """

    Crop image according to the supplied bounding box.

    res: [rows, cols]

    """
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1
    # Bottom right point
    br = np.array(transform([res[1] + 1, res[0] + 1], center, scale, res, invert=1)) - 1

    # Padding so that when rotated proper amount of context is included
    pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)

    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.zeros(new_shape, dtype=np.float32)

    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(len(img[0]), br[0])
    old_y = max(0, ul[1]), min(len(img), br[1])
    
    try:
        new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]]
    except Exception as e:
        print(e)

    new_img = cv2.resize(new_img, (res[1], res[0]))  # (cols, rows)

    return new_img, ul, br


def obtain_bbox(center, scale, res, org_res):
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1
    # Bottom right point
    br = np.array(transform([res[1] + 1, res[0] + 1], center, scale, res, invert=1)) - 1

    # Padding so that when rotated proper amount of context is included
    pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)

    # Range to sample from original image
    old_x = max(0, ul[0]), min(org_res[0], br[0])
    old_y = max(0, ul[1]), min(org_res[1], br[1])
    
    return old_x, old_y


def cam_crop2full(crop_cam, bbox, full_img_shape, focal_length=None):
    """

    convert the camera parameters from the crop camera to the full camera

    :param crop_cam: shape=(N, 3) weak perspective camera in cropped img coordinates (s, tx, ty)

    :param center: shape=(N, 2) bbox coordinates (c_x, c_y)

    :param scale: shape=(N, 1) square bbox resolution  (b / 200)

    :param full_img_shape: shape=(N, 2) original image height and width

    :param focal_length: shape=(N,)

    :return:

    """
    
    cx = bbox[..., 0].clone(); cy = bbox[..., 1].clone(); b = bbox[..., 2].clone() * 200
    img_h, img_w = full_img_shape[:, 0], full_img_shape[:, 1]
    w_2, h_2 = img_w / 2., img_h / 2.
    bs = b * crop_cam[:, :, 0] + 1e-9
    
    if focal_length is None:
        focal_length = (img_w * img_w + img_h * img_h) ** 0.5
    
    tz = 2 * focal_length.unsqueeze(-1) / bs
    tx = (2 * (cx - w_2.unsqueeze(-1)) / bs) + crop_cam[:, :, 1]
    ty = (2 * (cy - h_2.unsqueeze(-1)) / bs) + crop_cam[:, :, 2]
    full_cam = torch.stack([tx, ty, tz], dim=-1)
    return full_cam


def cam_pred2full(crop_cam, center, scale, full_img_shape, focal_length=2000.,):
    """

    Reference CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation

    

    convert the camera parameters from the crop camera to the full camera

    :param crop_cam: shape=(N, 3) weak perspective camera in cropped img coordinates (s, tx, ty)

    :param center: shape=(N, 2) bbox coordinates (c_x, c_y)

    :param scale: shape=(N, ) square bbox resolution  (b / 200)

    :param full_img_shape: shape=(N, 2) original image height and width

    :param focal_length: shape=(N,)

    :return:

    """
    
    # img_h, img_w = full_img_shape[:, 0], full_img_shape[:, 1]
    img_w, img_h = full_img_shape[:, 0], full_img_shape[:, 1]
    cx, cy, b = center[:, 0], center[:, 1], scale * 200
    w_2, h_2 = img_w / 2., img_h / 2.
    bs = b * crop_cam[:, 0] + 1e-9
    tz = 2 * focal_length / bs
    tx = (2 * (cx - w_2) / bs) + crop_cam[:, 1]
    ty = (2 * (cy - h_2) / bs) + crop_cam[:, 2]
    full_cam = torch.stack([tx, ty, tz], dim=-1)
    return full_cam


def cam_full2pred(full_cam, center, scale, full_img_shape, focal_length=2000.):
    # img_h, img_w = full_img_shape[:, 0], full_img_shape[:, 1]
    img_w, img_h = full_img_shape[:, 0], full_img_shape[:, 1]
    cx, cy, b = center[:, 0], center[:, 1], scale * 200
    w_2, h_2 = img_w / 2., img_h / 2.
    
    bs = (2 * focal_length / full_cam[:, 2])
    _s = bs / b
    _tx = full_cam[:, 0] - (2 * (cx - w_2) / bs)
    _ty = full_cam[:, 1] - (2 * (cy - h_2) / bs)
    crop_cam = torch.stack([_s, _tx, _ty], dim=-1)
    return crop_cam


def obtain_camera_intrinsics(image_shape, focal_length):
    res_w = image_shape[..., 0].clone()
    res_h = image_shape[..., 1].clone()
    K = torch.eye(3).unsqueeze(0).expand(focal_length.shape[0], -1, -1).to(focal_length.device)
    K[..., 0, 0] = focal_length.clone()
    K[..., 1, 1] = focal_length.clone()
    K[..., 0, 2] = res_w / 2
    K[..., 1, 2] = res_h / 2
    
    return K.unsqueeze(1)


def trans_point2d(pt_2d, trans):
    src_pt = np.array([pt_2d[0], pt_2d[1], 1.]).T
    dst_pt = np.dot(trans, src_pt)
    return dst_pt[0:2]

def rotate_2d(pt_2d, rot_rad):
    x = pt_2d[0]
    y = pt_2d[1]
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)
    xx = x * cs - y * sn
    yy = x * sn + y * cs
    return np.array([xx, yy], dtype=np.float32)

def gen_trans_from_patch_cv(c_x, c_y, src_width, src_height, dst_width, dst_height, scale, rot, inv=False):
    # augment size with scale
    src_w = src_width * scale
    src_h = src_height * scale
    src_center = np.zeros(2)
    src_center[0] = c_x
    src_center[1] = c_y # np.array([c_x, c_y], dtype=np.float32)
    # augment rotation
    rot_rad = np.pi * rot / 180
    src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad)
    src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad)

    dst_w = dst_width
    dst_h = dst_height
    dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
    dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
    dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = src_center
    src[1, :] = src_center + src_downdir
    src[2, :] = src_center + src_rightdir

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = dst_center
    dst[1, :] = dst_center + dst_downdir
    dst[2, :] = dst_center + dst_rightdir

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans

def transform_keypoints(kp_2d, bbox, patch_width, patch_height):

    center_x, center_y, scale = bbox[:3]
    width = height = scale * 200
    # scale, rot = 1.2, 0
    scale, rot = 1.0, 0

    # generate transformation
    trans = gen_trans_from_patch_cv(
        center_x,
        center_y,
        width,
        height,
        patch_width,
        patch_height,
        scale,
        rot,
        inv=False,
    )

    for n_jt in range(kp_2d.shape[0]):
        kp_2d[n_jt] = trans_point2d(kp_2d[n_jt], trans)

    return kp_2d, trans


def transform(pt, center, scale, res, invert=0, rot=0):
    """Transform pixel location to different reference."""
    t = get_transform(center, scale, res, rot=rot)
    if invert:
        t = np.linalg.inv(t)
    new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2].astype(int) + 1


def compute_cam_intrinsics(res):
    img_w, img_h = res
    focal_length = (img_w * img_w + img_h * img_h) ** 0.5
    cam_intrinsics = torch.eye(3).repeat(1, 1, 1).float()
    cam_intrinsics[:, 0, 0] = focal_length
    cam_intrinsics[:, 1, 1] = focal_length
    cam_intrinsics[:, 0, 2] = img_w/2.
    cam_intrinsics[:, 1, 2] = img_h/2.
    return cam_intrinsics


def flip_kp(kp, img_w=None):
    """Flip keypoints."""
    
    flipped_parts = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
    kp = kp[..., flipped_parts, :]
    
    if img_w is not None:
        # Assume 2D keypoints
        kp[...,0] = img_w - kp[...,0]
    return kp


def flip_bbox(bbox, img_w, img_h):
    center = bbox[..., :2]
    scale = bbox[..., -1:]
    
    WH = np.ones_like(center)
    WH[..., 0] *= img_w
    WH[..., 1] *= img_h
    
    center = center - WH/2
    center[...,0] = - center[...,0]
    center = center + WH/2
    
    flipped_bbox = np.concatenate((center, scale), axis=-1)
    return flipped_bbox


def flip_pose(rotation, representation='rotation_6d'):
    """Flip pose.

    The flipping is based on SMPL parameters.

    """
    
    BN = rotation.shape[0]
    
    if representation == 'axis_angle':
        pose = rotation.reshape(BN, -1).transpose(0, 1)
    elif representation == 'matrix':
        pose = transforms.matrix_to_axis_angle(rotation).reshape(BN, -1).transpose(0, 1)
    elif representation == 'rotation_6d':
        pose = transforms.matrix_to_axis_angle(
            transforms.rotation_6d_to_matrix(rotation)
        ).reshape(BN, -1).transpose(0, 1)
    else:
        raise ValueError(f"Unknown representation: {representation}")
    
    SMPL_JOINTS_FLIP_PERM = [0, 2, 1, 3, 5, 4, 6, 8, 7, 9, 11, 10, 12, 14, 13, 15, 17, 16, 19, 18, 21, 20, 23, 22]
    SMPL_POSE_FLIP_PERM = []
    for i in SMPL_JOINTS_FLIP_PERM:
        SMPL_POSE_FLIP_PERM.append(3*i)
        SMPL_POSE_FLIP_PERM.append(3*i+1)
        SMPL_POSE_FLIP_PERM.append(3*i+2)
    
    pose = pose[SMPL_POSE_FLIP_PERM]
    
    # we also negate the second and the third dimension of the axis-angle
    pose[1::3] = -pose[1::3]
    pose[2::3] = -pose[2::3]
    pose = pose.transpose(0, 1).reshape(BN, -1, 3)
    
    if representation == 'aa':
        return pose
    elif representation == 'rotmat':
        return transforms.axis_angle_to_matrix(pose)
    else:
        return transforms.matrix_to_rotation_6d(
            transforms.axis_angle_to_matrix(pose)
        )
        
def avg_preds(rotation, shape, flipped_rotation, flipped_shape, representation='rotation_6d'):
    # Rotation
    flipped_rotation = flip_pose(flipped_rotation, representation=representation)
    
    if representation != 'matrix':
        flipped_rotation = eval(f'transforms.{representation}_to_matrix')(flipped_rotation)
        rotation = eval(f'transforms.{representation}_to_matrix')(rotation)
    
    avg_rotation = torch.stack([rotation, flipped_rotation])
    avg_rotation = transforms.avg_rot(avg_rotation)
    
    if representation != 'matrix':
        avg_rotation = eval(f'transforms.matrix_to_{representation}')(avg_rotation)
    
    # Shape
    avg_shape = (shape + flipped_shape) / 2.0
    
    return avg_rotation, avg_shape