File size: 9,279 Bytes
c87d1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import torch
import numpy as np
from torch import nn
from configs import constants as _C
from .utils import rollout_global_motion
from lib.utils.transforms import axis_angle_to_matrix


class Regressor(nn.Module):
    def __init__(self, in_dim, hid_dim, out_dims, init_dim, layer='LSTM', n_layers=2, n_iters=1):
        super().__init__()
        self.n_outs = len(out_dims)

        self.rnn = getattr(nn, layer.upper())(
            in_dim + init_dim, hid_dim, n_layers, 
            bidirectional=False, batch_first=True, dropout=0.3)

        for i, out_dim in enumerate(out_dims):
            setattr(self, 'declayer%d'%i, nn.Linear(hid_dim, out_dim))
            nn.init.xavier_uniform_(getattr(self, 'declayer%d'%i).weight, gain=0.01)

    def forward(self, x, inits, h0):
        xc = torch.cat([x, *inits], dim=-1)
        xc, h0 = self.rnn(xc, h0)

        preds = []
        for j in range(self.n_outs):
            out = getattr(self, 'declayer%d'%j)(xc)
            preds.append(out)

        return preds, xc, h0
    
    
class NeuralInitialization(nn.Module):
    def __init__(self, in_dim, hid_dim, layer, n_layers):
        super().__init__()

        out_dim = hid_dim
        self.n_layers = n_layers
        self.num_inits = int(layer.upper() == 'LSTM') + 1
        out_dim *= self.num_inits * n_layers

        self.linear1 = nn.Linear(in_dim, hid_dim)
        self.linear2 = nn.Linear(hid_dim, hid_dim * self.n_layers)
        self.linear3 = nn.Linear(hid_dim * self.n_layers, out_dim)
        self.relu1 = nn.ReLU()
        self.relu2 = nn.ReLU()

    def forward(self, x):
        b = x.shape[0]

        out = self.linear3(self.relu2(self.linear2(self.relu1(self.linear1(x)))))
        out = out.view(b, self.num_inits, self.n_layers, -1).permute(1, 2, 0, 3).contiguous()

        if self.num_inits == 2:
            return tuple([_ for _ in out])
        return out[0]


class Integrator(nn.Module):
    def __init__(self, in_channel, out_channel, hid_channel=1024):
        super().__init__()
        
        self.layer1 = nn.Linear(in_channel, hid_channel)
        self.relu1 = nn.ReLU()
        self.dr1 = nn.Dropout(0.1)
        
        self.layer2 = nn.Linear(hid_channel, hid_channel)
        self.relu2 = nn.ReLU()
        self.dr2 = nn.Dropout(0.1)
        
        self.layer3 = nn.Linear(hid_channel, out_channel)
        
        
    def forward(self, x, feat):
        res = x
        mask = (feat != 0).all(dim=-1).all(dim=-1)
        
        out = torch.cat((x, feat), dim=-1)
        out = self.layer1(out)
        out = self.relu1(out)
        out = self.dr1(out)
        
        out = self.layer2(out)
        out = self.relu2(out)
        out = self.dr2(out)
        
        out = self.layer3(out)
        out[mask] = out[mask] + res[mask]
        
        return out


class MotionEncoder(nn.Module):
    def __init__(self, 

                 in_dim, 

                 d_embed,

                 pose_dr,

                 rnn_type,

                 n_layers,

                 n_joints):
        super().__init__()
        
        self.n_joints = n_joints
        
        self.embed_layer = nn.Linear(in_dim, d_embed)
        self.pos_drop = nn.Dropout(pose_dr)
        
        # Keypoints initializer
        self.neural_init = NeuralInitialization(n_joints * 3 + in_dim, d_embed, rnn_type, n_layers)
        
        # 3d keypoints regressor
        self.regressor = Regressor(
            d_embed, d_embed, [n_joints * 3], n_joints * 3, rnn_type, n_layers)
        
    def forward(self, x, init):
        """ Forward pass of motion encoder.

        """
        
        self.b, self.f = x.shape[:2]
        x = self.embed_layer(x.reshape(self.b, self.f, -1))
        x = self.pos_drop(x)
        
        h0 = self.neural_init(init)
        pred_list = [init[..., :self.n_joints * 3]]
        motion_context_list = []
        
        for i in range(self.f):
            (pred_kp3d, ), motion_context, h0 = self.regressor(x[:, [i]], pred_list[-1:], h0)
            motion_context_list.append(motion_context)
            pred_list.append(pred_kp3d)
            
        pred_kp3d = torch.cat(pred_list[1:], dim=1).view(self.b, self.f, -1, 3)
        motion_context = torch.cat(motion_context_list, dim=1)
        
        # Merge 3D keypoints with motion context
        motion_context = torch.cat((motion_context, pred_kp3d.reshape(self.b, self.f, -1)), dim=-1)
        return pred_kp3d, motion_context


class TrajectoryDecoder(nn.Module):
    def __init__(self, 

                 d_embed,

                 rnn_type,

                 n_layers):
        super().__init__()
        
        # Trajectory regressor
        self.regressor = Regressor(
            d_embed, d_embed, [3, 6], 12, rnn_type, n_layers, )
        
    def forward(self, x, root, cam_a, h0=None):
        """ Forward pass of trajectory decoder.

        """
        
        b, f = x.shape[:2]
        pred_root_list, pred_vel_list = [root[:, :1]], []
        
        for i in range(f):
            # Global coordinate estimation
            (pred_rootv, pred_rootr), _, h0 = self.regressor(
                x[:, [i]], [pred_root_list[-1], cam_a[:, [i]]], h0)
            
            pred_root_list.append(pred_rootr)
            pred_vel_list.append(pred_rootv)
        
        pred_root = torch.cat(pred_root_list, dim=1).view(b, f + 1, -1)
        pred_vel = torch.cat(pred_vel_list, dim=1).view(b, f, -1)
        
        return pred_root, pred_vel
        

class MotionDecoder(nn.Module):
    def __init__(self, 

                 d_embed,

                 rnn_type,

                 n_layers):
        super().__init__()
        
        self.n_pose = 24
        
        # SMPL pose initialization
        self.neural_init = NeuralInitialization(len(_C.BMODEL.MAIN_JOINTS) * 6, d_embed, rnn_type, n_layers)
        
        # 3d keypoints regressor
        self.regressor = Regressor(
            d_embed, d_embed, [self.n_pose * 6, 10, 3, 4], self.n_pose * 6, rnn_type, n_layers)
        
    def forward(self, x, init):
        """ Forward pass of motion decoder.

        """
        b, f = x.shape[:2]
        
        h0 = self.neural_init(init[:, :, _C.BMODEL.MAIN_JOINTS].reshape(b, 1, -1))
        
        # Recursive prediction of SMPL parameters
        pred_pose_list = [init.reshape(b, 1, -1)]
        pred_shape_list, pred_cam_list, pred_contact_list = [], [], []
        
        for i in range(f):
            # Camera coordinate estimation
            (pred_pose, pred_shape, pred_cam, pred_contact), _, h0 = self.regressor(x[:, [i]], pred_pose_list[-1:], h0)
            pred_pose_list.append(pred_pose)
            pred_shape_list.append(pred_shape)
            pred_cam_list.append(pred_cam)
            pred_contact_list.append(pred_contact)
            
        pred_pose = torch.cat(pred_pose_list[1:], dim=1).view(b, f, -1)
        pred_shape = torch.cat(pred_shape_list, dim=1).view(b, f, -1)
        pred_cam = torch.cat(pred_cam_list, dim=1).view(b, f, -1)
        pred_contact = torch.cat(pred_contact_list, dim=1).view(b, f, -1)
        
        return pred_pose, pred_shape, pred_cam, pred_contact


class TrajectoryRefiner(nn.Module):
    def __init__(self, 

                 d_embed,

                 d_hidden, 

                 rnn_type,

                 n_layers):
        super().__init__()
        
        d_input = d_embed + 12
        self.refiner = Regressor(
            d_input, d_hidden, [6, 3], 9, rnn_type, n_layers)

    def forward(self, context, pred_vel, output, cam_angvel, return_y_up):
        b, f = context.shape[:2]
        
        # Register values
        pred_root = output['poses_root_r6d'].clone().detach()
        feet = output['feet'].clone().detach()
        contact = output['contact'].clone().detach()
        
        feet_vel = torch.cat((torch.zeros_like(feet[:, :1]), feet[:, 1:] - feet[:, :-1]), dim=1) * 30   # Normalize to 30 times
        feet = (feet_vel * contact.unsqueeze(-1)).reshape(b, f, -1)  # Velocity input
        inpt_feat = torch.cat([context, feet], dim=-1)
        
        (delta_root, delta_vel), _, _ = self.refiner(inpt_feat, [pred_root[:, 1:], pred_vel], h0=None)
        pred_root[:, 1:] = pred_root[:, 1:] + delta_root
        pred_vel = pred_vel + delta_vel

        # root_world, trans_world = rollout_global_motion(pred_root, pred_vel)
        
        # if return_y_up:
        #     yup2ydown = axis_angle_to_matrix(torch.tensor([[np.pi, 0, 0]])).float().to(root_world.device)
        #     root_world = yup2ydown.mT @ root_world
        #     trans_world = (yup2ydown.mT @ trans_world.unsqueeze(-1)).squeeze(-1)
            
        output.update({
            'poses_root_r6d_refined': pred_root,
            'vel_root_refined': pred_vel,
            # 'poses_root_world': root_world,
            # 'trans_world': trans_world,
        })
        
        return output