File size: 8,659 Bytes
f561f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import os.path as osp
from glob import glob
from collections import defaultdict

import cv2
import torch
import pickle
import joblib
import argparse
import numpy as np
from loguru import logger
from progress.bar import Bar

from configs import constants as _C
from lib.models.smpl import SMPL
from lib.models.preproc.extractor import FeatureExtractor
from lib.models.preproc.backbone.utils import process_image
from lib.utils import transforms
from lib.utils.imutils import (
    flip_kp, flip_bbox
)


dataset = defaultdict(list)
detection_results_dir = 'dataset/detection_results/3DPW'
tcmr_annot_pth = 'dataset/parsed_data/TCMR_preproc/3dpw_dset_db.pt'

@torch.no_grad()
def preprocess(dset, batch_size):

    if dset == 'val': _dset = 'validation'
    else: _dset = dset
    
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    save_pth = osp.join(_C.PATHS.PARSED_DATA, f'3pdw_{dset}_vit.pth') # Use ViT feature extractor
    extractor = FeatureExtractor(device, flip_eval=True, max_batch_size=batch_size)
    
    tcmr_data = joblib.load(tcmr_annot_pth.replace('dset', dset))
    smpl_neutral = SMPL(model_path=_C.BMODEL.FLDR)
    
    annot_file_list, idxs = np.unique(tcmr_data['vid_name'], return_index=True)
    idxs = idxs.tolist()
    annot_file_list = [annot_file_list[idxs.index(idx)] for idx in sorted(idxs)]
    annot_file_list = [osp.join(_C.PATHS.THREEDPW_PTH, 'sequenceFiles', _dset, annot_file[:-2] + '.pkl') for annot_file in annot_file_list]
    annot_file_list = list(dict.fromkeys(annot_file_list))
    
    for annot_file in annot_file_list:
        seq = annot_file.split('/')[-1].split('.')[0]
        
        data = pickle.load(open(annot_file, 'rb'), encoding='latin1')
        
        num_people = len(data['poses'])
        num_frames = len(data['img_frame_ids'])
        assert (data['poses2d'][0].shape[0] == num_frames)
        
        K = torch.from_numpy(data['cam_intrinsics']).unsqueeze(0).float()
        
        for p_id in range(num_people):

            logger.info(f'==> {seq} {p_id}')
            gender = {'m': 'male', 'f': 'female'}[data['genders'][p_id]]
            
            # ======== Add TCMR data ======== #
            vid_name = f'{seq}_{p_id}'
            tcmr_ids = [i for i, v in enumerate(tcmr_data['vid_name']) if vid_name in v]
            frame_ids = tcmr_data['frame_id'][tcmr_ids]
            
            pose = torch.from_numpy(data['poses'][p_id]).float()[frame_ids]
            shape = torch.from_numpy(data['betas'][p_id][:10]).float().repeat(pose.size(0), 1)
            pose = torch.from_numpy(tcmr_data['pose'][tcmr_ids]).float()    # Camera coordinate
            cam_poses = torch.from_numpy(data['cam_poses'][frame_ids]).float()
            
            # ======== Get detection results ======== #
            fname = f'{seq}_{p_id}.npy'
            pred_kp2d = torch.from_numpy(
                np.load(osp.join(detection_results_dir, fname))
            ).float()[frame_ids]
            # ======== Get detection results ======== #
            
            img_paths = sorted(glob(osp.join(_C.PATHS.THREEDPW_PTH, 'imageFiles', seq, '*.jpg')))
            img_paths = [img_path for i, img_path in enumerate(img_paths) if i in frame_ids]
            img = cv2.imread(img_paths[0]); res_h, res_w = img.shape[:2]
            vid_idxs = fname.split('.')[0]
        
            # ======== Append data ======== #
            dataset['gender'].append(gender)
            dataset['vid'].append(vid_idxs)
            dataset['pose'].append(pose)
            dataset['betas'].append(shape)
            dataset['cam_poses'].append(cam_poses)
            dataset['frame_id'].append(torch.from_numpy(frame_ids))
            dataset['res'].append(torch.tensor([[res_w, res_h]]).repeat(len(frame_ids), 1).float())
            dataset['bbox'].append(torch.from_numpy(tcmr_data['bbox'][tcmr_ids].copy()).float())
            dataset['kp2d'].append(pred_kp2d)
            
            # Flipped data
            dataset['flipped_bbox'].append(
                torch.from_numpy(flip_bbox(dataset['bbox'][-1].clone().numpy(), res_w, res_h)).float()
            )
            dataset['flipped_kp2d'].append(
                torch.from_numpy(flip_kp(dataset['kp2d'][-1].clone().numpy(), res_w)).float()
            )
            # ======== Append data ======== #            
            
            # ======== Extract features ======== #
            patch_list = []
            bboxes = dataset['bbox'][-1].clone().numpy()
            bar = Bar(f'Load images', fill='#', max=len(img_paths))
            
            for img_path, bbox in zip(img_paths, bboxes):
                img_rgb = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
                norm_img, crop_img = process_image(img_rgb, bbox[:2], bbox[2] / 200, 256, 256)
                patch_list.append(torch.from_numpy(norm_img).unsqueeze(0).float())
                bar.next()

            patch_list = torch.split(torch.cat(patch_list), batch_size)
            features, flipped_features = [], []
            for i, patch in enumerate(patch_list):
                feature = extractor.model(patch.cuda(), encode=True)
                features.append(feature.cpu())
                
                flipped_feature = extractor.model(torch.flip(patch, (3, )).cuda(), encode=True)
                flipped_features.append(flipped_feature.cpu())
                
                if i == 0:
                    init_patch = patch[[0]].clone()

            features = torch.cat(features)
            flipped_features = torch.cat(flipped_features)
            dataset['features'].append(features)
            dataset['flipped_features'].append(flipped_features)
            # ======== Extract features ======== #
            
            # Pad 1 frame
            for key, val in dataset.items():
                if isinstance(val[-1], torch.Tensor):
                    dataset[key][-1] = torch.cat((val[-1][:1].clone(), val[-1][:]), dim=0)
            
            # Initial predictions
            bbox = torch.from_numpy(bboxes[:1].copy()).float().cuda()
            bbox_center = bbox[:, :2].clone()
            bbox_scale = bbox[:, 2].clone() / 200
            kwargs = {'img_w': torch.tensor(res_w).repeat(1).float().cuda(), 
                      'img_h': torch.tensor(res_h).repeat(1).float().cuda(), 
                     'bbox_center': bbox_center, 'bbox_scale': bbox_scale}

            pred_global_orient, pred_pose, pred_shape, _ = extractor.model(init_patch.cuda(), **kwargs)
            pred_output = smpl_neutral.get_output(global_orient=pred_global_orient.cpu(),
                                                  body_pose=pred_pose.cpu(),
                                                  betas=pred_shape.cpu(),
                                                  pose2rot=False)
            init_kp3d = pred_output.joints
            init_pose = transforms.matrix_to_axis_angle(torch.cat((pred_global_orient, pred_pose), dim=1))
            
            dataset['init_kp3d'].append(init_kp3d)
            dataset['init_pose'].append(init_pose.cpu())

            # Flipped initial predictions
            bbox_center[:, 0] = res_w - bbox_center[:, 0]
            pred_global_orient, pred_pose, pred_shape, _ = extractor.model(torch.flip(init_patch, (3, )).cuda(), **kwargs)
            pred_output = smpl_neutral.get_output(global_orient=pred_global_orient.cpu(),
                                                  body_pose=pred_pose.cpu(),
                                                  betas=pred_shape.cpu(),
                                                  pose2rot=False)
            init_kp3d = pred_output.joints
            init_pose = transforms.matrix_to_axis_angle(torch.cat((pred_global_orient, pred_pose), dim=1))
            
            dataset['flipped_init_kp3d'].append(init_kp3d)
            dataset['flipped_init_pose'].append(init_pose.cpu())
            
    joblib.dump(dataset, save_pth)
    logger.info(f'\n ==> Done !')
    

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-s', '--split', type=str, choices=['val', 'test'], help='Data split')
    parser.add_argument('-b', '--batch_size', type=int, default=128, help='Data split')
    args = parser.parse_args()
    
    preprocess(args.split, args.batch_size)