Spaces:
Sleeping
Sleeping
File size: 17,562 Bytes
20ae9ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import numpy as np
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from . import altcorr, fastba, lietorch
from . import projective_ops as pops
from .lietorch import SE3
from .net import VONet
from .patchgraph import PatchGraph
from .utils import *
mp.set_start_method('spawn', True)
autocast = torch.cuda.amp.autocast
Id = SE3.Identity(1, device="cuda")
class DPVO:
def __init__(self, cfg, network, ht=480, wd=640, viz=False):
self.cfg = cfg
self.load_weights(network)
self.is_initialized = False
self.enable_timing = False
torch.set_num_threads(2)
self.M = self.cfg.PATCHES_PER_FRAME
self.N = self.cfg.BUFFER_SIZE
self.ht = ht # image height
self.wd = wd # image width
DIM = self.DIM
RES = self.RES
### state attributes ###
self.tlist = []
self.counter = 0
# keep track of global-BA calls
self.ran_global_ba = np.zeros(100000, dtype=bool)
ht = ht // RES
wd = wd // RES
# dummy image for visualization
self.image_ = torch.zeros(self.ht, self.wd, 3, dtype=torch.uint8, device="cpu")
### network attributes ###
if self.cfg.MIXED_PRECISION:
self.kwargs = kwargs = {"device": "cuda", "dtype": torch.half}
else:
self.kwargs = kwargs = {"device": "cuda", "dtype": torch.float}
### frame memory size ###
self.pmem = self.mem = 36 # 32 was too small given default settings
if self.cfg.LOOP_CLOSURE:
self.last_global_ba = -1000 # keep track of time since last global opt
self.pmem = self.cfg.MAX_EDGE_AGE # patch memory
self.imap_ = torch.zeros(self.pmem, self.M, DIM, **kwargs)
self.gmap_ = torch.zeros(self.pmem, self.M, 128, self.P, self.P, **kwargs)
self.pg = PatchGraph(self.cfg, self.P, self.DIM, self.pmem, **kwargs)
# classic backend
if self.cfg.CLASSIC_LOOP_CLOSURE:
self.load_long_term_loop_closure()
self.fmap1_ = torch.zeros(1, self.mem, 128, ht // 1, wd // 1, **kwargs)
self.fmap2_ = torch.zeros(1, self.mem, 128, ht // 4, wd // 4, **kwargs)
# feature pyramid
self.pyramid = (self.fmap1_, self.fmap2_)
self.viewer = None
if viz:
self.start_viewer()
def load_long_term_loop_closure(self):
try:
from .loop_closure.long_term import LongTermLoopClosure
self.long_term_lc = LongTermLoopClosure(self.cfg, self.pg)
except ModuleNotFoundError as e:
self.cfg.CLASSIC_LOOP_CLOSURE = False
print(f"WARNING: {e}")
def load_weights(self, network):
# load network from checkpoint file
if isinstance(network, str):
from collections import OrderedDict
state_dict = torch.load(network)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if "update.lmbda" not in k:
new_state_dict[k.replace('module.', '')] = v
self.network = VONet()
self.network.load_state_dict(new_state_dict)
else:
self.network = network
# steal network attributes
self.DIM = self.network.DIM
self.RES = self.network.RES
self.P = self.network.P
self.network.cuda()
self.network.eval()
def start_viewer(self):
from dpviewer import Viewer
intrinsics_ = torch.zeros(1, 4, dtype=torch.float32, device="cuda")
self.viewer = Viewer(
self.image_,
self.pg.poses_,
self.pg.points_,
self.pg.colors_,
intrinsics_)
@property
def poses(self):
return self.pg.poses_.view(1, self.N, 7)
@property
def patches(self):
return self.pg.patches_.view(1, self.N*self.M, 3, 3, 3)
@property
def intrinsics(self):
return self.pg.intrinsics_.view(1, self.N, 4)
@property
def ix(self):
return self.pg.index_.view(-1)
@property
def imap(self):
return self.imap_.view(1, self.pmem * self.M, self.DIM)
@property
def gmap(self):
return self.gmap_.view(1, self.pmem * self.M, 128, 3, 3)
@property
def n(self):
return self.pg.n
@n.setter
def n(self, val):
self.pg.n = val
@property
def m(self):
return self.pg.m
@m.setter
def m(self, val):
self.pg.m = val
def get_pose(self, t):
if t in self.traj:
return SE3(self.traj[t])
t0, dP = self.pg.delta[t]
return dP * self.get_pose(t0)
def terminate(self):
if self.cfg.CLASSIC_LOOP_CLOSURE:
self.long_term_lc.terminate(self.n)
if self.cfg.LOOP_CLOSURE:
self.append_factors(*self.pg.edges_loop())
for _ in range(12):
self.ran_global_ba[self.n] = False
self.update()
""" interpolate missing poses """
self.traj = {}
for i in range(self.n):
self.traj[self.pg.tstamps_[i]] = self.pg.poses_[i]
poses = [self.get_pose(t) for t in range(self.counter)]
poses = lietorch.stack(poses, dim=0)
poses = poses.inv().data.cpu().numpy()
tstamps = np.array(self.tlist, dtype=np.float64)
if self.viewer is not None:
self.viewer.join()
# Poses: x y z qx qy qz qw
return poses, tstamps
def corr(self, coords, indicies=None):
""" local correlation volume """
ii, jj = indicies if indicies is not None else (self.pg.kk, self.pg.jj)
ii1 = ii % (self.M * self.pmem)
jj1 = jj % (self.mem)
corr1 = altcorr.corr(self.gmap, self.pyramid[0], coords / 1, ii1, jj1, 3)
corr2 = altcorr.corr(self.gmap, self.pyramid[1], coords / 4, ii1, jj1, 3)
return torch.stack([corr1, corr2], -1).view(1, len(ii), -1)
def reproject(self, indicies=None):
""" reproject patch k from i -> j """
(ii, jj, kk) = indicies if indicies is not None else (self.pg.ii, self.pg.jj, self.pg.kk)
coords = pops.transform(SE3(self.poses), self.patches, self.intrinsics, ii, jj, kk)
return coords.permute(0, 1, 4, 2, 3).contiguous()
def append_factors(self, ii, jj):
self.pg.jj = torch.cat([self.pg.jj, jj])
self.pg.kk = torch.cat([self.pg.kk, ii])
self.pg.ii = torch.cat([self.pg.ii, self.ix[ii]])
net = torch.zeros(1, len(ii), self.DIM, **self.kwargs)
self.pg.net = torch.cat([self.pg.net, net], dim=1)
def remove_factors(self, m, store: bool):
assert self.pg.ii.numel() == self.pg.weight.shape[1]
if store:
self.pg.ii_inac = torch.cat((self.pg.ii_inac, self.pg.ii[m]))
self.pg.jj_inac = torch.cat((self.pg.jj_inac, self.pg.jj[m]))
self.pg.kk_inac = torch.cat((self.pg.kk_inac, self.pg.kk[m]))
self.pg.weight_inac = torch.cat((self.pg.weight_inac, self.pg.weight[:,m]), dim=1)
self.pg.target_inac = torch.cat((self.pg.target_inac, self.pg.target[:,m]), dim=1)
self.pg.weight = self.pg.weight[:,~m]
self.pg.target = self.pg.target[:,~m]
self.pg.ii = self.pg.ii[~m]
self.pg.jj = self.pg.jj[~m]
self.pg.kk = self.pg.kk[~m]
self.pg.net = self.pg.net[:,~m]
assert self.pg.ii.numel() == self.pg.weight.shape[1]
def motion_probe(self):
""" kinda hacky way to ensure enough motion for initialization """
kk = torch.arange(self.m-self.M, self.m, device="cuda")
jj = self.n * torch.ones_like(kk)
ii = self.ix[kk]
net = torch.zeros(1, len(ii), self.DIM, **self.kwargs)
coords = self.reproject(indicies=(ii, jj, kk))
with autocast(enabled=self.cfg.MIXED_PRECISION):
corr = self.corr(coords, indicies=(kk, jj))
ctx = self.imap[:,kk % (self.M * self.pmem)]
net, (delta, weight, _) = \
self.network.update(net, ctx, corr, None, ii, jj, kk)
return torch.quantile(delta.norm(dim=-1).float(), 0.5)
def motionmag(self, i, j):
k = (self.pg.ii == i) & (self.pg.jj == j)
ii = self.pg.ii[k]
jj = self.pg.jj[k]
kk = self.pg.kk[k]
flow, _ = pops.flow_mag(SE3(self.poses), self.patches, self.intrinsics, ii, jj, kk, beta=0.5)
return flow.mean().item()
def keyframe(self):
i = self.n - self.cfg.KEYFRAME_INDEX - 1
j = self.n - self.cfg.KEYFRAME_INDEX + 1
m = self.motionmag(i, j) + self.motionmag(j, i)
if m / 2 < self.cfg.KEYFRAME_THRESH:
k = self.n - self.cfg.KEYFRAME_INDEX
t0 = self.pg.tstamps_[k-1]
t1 = self.pg.tstamps_[k]
dP = SE3(self.pg.poses_[k]) * SE3(self.pg.poses_[k-1]).inv()
self.pg.delta[t1] = (t0, dP)
to_remove = (self.pg.ii == k) | (self.pg.jj == k)
self.remove_factors(to_remove, store=False)
self.pg.kk[self.pg.ii > k] -= self.M
self.pg.ii[self.pg.ii > k] -= 1
self.pg.jj[self.pg.jj > k] -= 1
for i in range(k, self.n-1):
self.pg.tstamps_[i] = self.pg.tstamps_[i+1]
self.pg.colors_[i] = self.pg.colors_[i+1]
self.pg.poses_[i] = self.pg.poses_[i+1]
self.pg.patches_[i] = self.pg.patches_[i+1]
self.pg.intrinsics_[i] = self.pg.intrinsics_[i+1]
self.imap_[i % self.pmem] = self.imap_[(i+1) % self.pmem]
self.gmap_[i % self.pmem] = self.gmap_[(i+1) % self.pmem]
self.fmap1_[0,i%self.mem] = self.fmap1_[0,(i+1)%self.mem]
self.fmap2_[0,i%self.mem] = self.fmap2_[0,(i+1)%self.mem]
self.n -= 1
self.m-= self.M
if self.cfg.CLASSIC_LOOP_CLOSURE:
self.long_term_lc.keyframe(k)
to_remove = self.ix[self.pg.kk] < self.n - self.cfg.REMOVAL_WINDOW # Remove edges falling outside the optimization window
if self.cfg.LOOP_CLOSURE:
# ...unless they are being used for loop closure
lc_edges = ((self.pg.jj - self.pg.ii) > 30) & (self.pg.jj > (self.n - self.cfg.OPTIMIZATION_WINDOW))
to_remove = to_remove & ~lc_edges
self.remove_factors(to_remove, store=True)
def __run_global_BA(self):
""" Global bundle adjustment
Includes both active and inactive edges """
full_target = torch.cat((self.pg.target_inac, self.pg.target), dim=1)
full_weight = torch.cat((self.pg.weight_inac, self.pg.weight), dim=1)
full_ii = torch.cat((self.pg.ii_inac, self.pg.ii))
full_jj = torch.cat((self.pg.jj_inac, self.pg.jj))
full_kk = torch.cat((self.pg.kk_inac, self.pg.kk))
self.pg.normalize()
lmbda = torch.as_tensor([1e-4], device="cuda")
t0 = self.pg.ii.min().item()
fastba.BA(self.poses, self.patches, self.intrinsics,
full_target, full_weight, lmbda, full_ii, full_jj, full_kk, t0, self.n, M=self.M, iterations=2, eff_impl=True)
self.ran_global_ba[self.n] = True
def update(self):
with Timer("other", enabled=self.enable_timing):
coords = self.reproject()
with autocast(enabled=True):
corr = self.corr(coords)
ctx = self.imap[:, self.pg.kk % (self.M * self.pmem)]
self.pg.net, (delta, weight, _) = \
self.network.update(self.pg.net, ctx, corr, None, self.pg.ii, self.pg.jj, self.pg.kk)
lmbda = torch.as_tensor([1e-4], device="cuda")
weight = weight.float()
target = coords[...,self.P//2,self.P//2] + delta.float()
self.pg.target = target
self.pg.weight = weight
with Timer("BA", enabled=self.enable_timing):
try:
# run global bundle adjustment if there exist long-range edges
if (self.pg.ii < self.n - self.cfg.REMOVAL_WINDOW - 1).any() and not self.ran_global_ba[self.n]:
self.__run_global_BA()
else:
t0 = self.n - self.cfg.OPTIMIZATION_WINDOW if self.is_initialized else 1
t0 = max(t0, 1)
fastba.BA(self.poses, self.patches, self.intrinsics,
target, weight, lmbda, self.pg.ii, self.pg.jj, self.pg.kk, t0, self.n, M=self.M, iterations=2, eff_impl=False)
except:
print("Warning BA failed...")
points = pops.point_cloud(SE3(self.poses), self.patches[:, :self.m], self.intrinsics, self.ix[:self.m])
points = (points[...,1,1,:3] / points[...,1,1,3:]).reshape(-1, 3)
self.pg.points_[:len(points)] = points[:]
def __edges_forw(self):
r=self.cfg.PATCH_LIFETIME
t0 = self.M * max((self.n - r), 0)
t1 = self.M * max((self.n - 1), 0)
return flatmeshgrid(
torch.arange(t0, t1, device="cuda"),
torch.arange(self.n-1, self.n, device="cuda"), indexing='ij')
def __edges_back(self):
r=self.cfg.PATCH_LIFETIME
t0 = self.M * max((self.n - 1), 0)
t1 = self.M * max((self.n - 0), 0)
return flatmeshgrid(torch.arange(t0, t1, device="cuda"),
torch.arange(max(self.n-r, 0), self.n, device="cuda"), indexing='ij')
def __call__(self, tstamp, image, intrinsics):
""" track new frame """
if self.cfg.CLASSIC_LOOP_CLOSURE:
self.long_term_lc(image, self.n)
if (self.n+1) >= self.N:
raise Exception(f'The buffer size is too small. You can increase it using "--opts BUFFER_SIZE={self.N*2}"')
if self.viewer is not None:
self.viewer.update_image(image.contiguous())
image = 2 * (image[None,None] / 255.0) - 0.5
with autocast(enabled=self.cfg.MIXED_PRECISION):
fmap, gmap, imap, patches, _, clr = \
self.network.patchify(image,
patches_per_image=self.cfg.PATCHES_PER_FRAME,
centroid_sel_strat=self.cfg.CENTROID_SEL_STRAT,
return_color=True)
### update state attributes ###
self.tlist.append(tstamp)
self.pg.tstamps_[self.n] = self.counter
self.pg.intrinsics_[self.n] = intrinsics / self.RES
# color info for visualization
clr = (clr[0,:,[2,1,0]] + 0.5) * (255.0 / 2)
self.pg.colors_[self.n] = clr.to(torch.uint8)
self.pg.index_[self.n + 1] = self.n + 1
self.pg.index_map_[self.n + 1] = self.m + self.M
if self.n > 1:
if self.cfg.MOTION_MODEL == 'DAMPED_LINEAR':
P1 = SE3(self.pg.poses_[self.n-1])
P2 = SE3(self.pg.poses_[self.n-2])
# To deal with varying camera hz
*_, a,b,c = [1]*3 + self.tlist
fac = (c-b) / (b-a)
xi = self.cfg.MOTION_DAMPING * fac * (P1 * P2.inv()).log()
tvec_qvec = (SE3.exp(xi) * P1).data
self.pg.poses_[self.n] = tvec_qvec
else:
tvec_qvec = self.poses[self.n-1]
self.pg.poses_[self.n] = tvec_qvec
# TODO better depth initialization
patches[:,:,2] = torch.rand_like(patches[:,:,2,0,0,None,None])
if self.is_initialized:
s = torch.median(self.pg.patches_[self.n-3:self.n,:,2])
patches[:,:,2] = s
self.pg.patches_[self.n] = patches
### update network attributes ###
self.imap_[self.n % self.pmem] = imap.squeeze()
self.gmap_[self.n % self.pmem] = gmap.squeeze()
self.fmap1_[:, self.n % self.mem] = F.avg_pool2d(fmap[0], 1, 1)
self.fmap2_[:, self.n % self.mem] = F.avg_pool2d(fmap[0], 4, 4)
self.counter += 1
if self.n > 0 and not self.is_initialized:
if self.motion_probe() < 2.0:
self.pg.delta[self.counter - 1] = (self.counter - 2, Id[0])
return
self.n += 1
self.m += self.M
if self.cfg.LOOP_CLOSURE:
if self.n - self.last_global_ba >= self.cfg.GLOBAL_OPT_FREQ:
""" Add loop closure factors """
lii, ljj = self.pg.edges_loop()
if lii.numel() > 0:
self.last_global_ba = self.n
self.append_factors(lii, ljj)
# Add forward and backward factors
self.append_factors(*self.__edges_forw())
self.append_factors(*self.__edges_back())
if self.n == 8 and not self.is_initialized:
self.is_initialized = True
for itr in range(12):
self.update()
elif self.is_initialized:
self.update()
self.keyframe()
if self.cfg.CLASSIC_LOOP_CLOSURE:
self.long_term_lc.attempt_loop_closure(self.n)
self.long_term_lc.lc_callback()
|