File size: 13,663 Bytes
f561f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]

import time
import torch
import shutil
import logging
import numpy as np
import os.path as osp
from progress.bar import Bar

from configs import constants as _C
from lib.utils import transforms
from lib.utils.utils import AverageMeter, prepare_batch
from lib.eval.eval_utils import (
    compute_accel,
    compute_error_accel,
    batch_align_by_pelvis,
    batch_compute_similarity_transform_torch,
)
from lib.models import build_body_model

logger = logging.getLogger(__name__)

class Trainer():
    def __init__(self, 

                 data_loaders,

                 network,

                 optimizer,

                 criterion=None,

                 train_stage='syn',

                 start_epoch=0,

                 checkpoint=None,

                 end_epoch=999,

                 lr_scheduler=None,

                 device=None,

                 writer=None,

                 debug=False,

                 resume=False,

                 logdir='output',

                 performance_type='min',

                 summary_iter=1,

                 ):
        
        self.train_loader, self.valid_loader = data_loaders
        
        # Model and optimizer
        self.network = network
        self.optimizer = optimizer
        
        # Training parameters
        self.train_stage = train_stage
        self.start_epoch = start_epoch
        self.end_epoch = end_epoch
        self.criterion = criterion
        self.lr_scheduler = lr_scheduler
        self.device = device
        self.writer = writer
        self.debug = debug
        self.resume = resume
        self.logdir = logdir
        self.summary_iter = summary_iter
        
        self.performance_type = performance_type
        self.train_global_step = 0
        self.valid_global_step = 0
        self.epoch = 0
        self.best_performance = float('inf') if performance_type == 'min' else -float('inf')
        self.summary_loss_keys = ['pose']

        self.evaluation_accumulators = dict.fromkeys(
            ['pred_j3d', 'target_j3d', 'pve'])# 'pred_verts', 'target_verts'])
        
        self.J_regressor_eval = torch.from_numpy(
            np.load(_C.BMODEL.JOINTS_REGRESSOR_H36M)
        )[_C.KEYPOINTS.H36M_TO_J14, :].unsqueeze(0).float().to(device)
        
        if self.writer is None:
            from torch.utils.tensorboard import SummaryWriter
            self.writer = SummaryWriter(log_dir=self.logdir)

        if self.device is None:
            self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
            
        if checkpoint is not None:
            self.load_pretrained(checkpoint)
        
    def train(self, ):
        # Single epoch training routine

        losses = AverageMeter()
        kp_2d_loss = AverageMeter()
        kp_3d_loss = AverageMeter()

        timer = {
            'data': 0,
            'forward': 0,
            'loss': 0,
            'backward': 0,
            'batch': 0,
        }
        self.network.train()
        start = time.time()
        summary_string = ''
        
        bar = Bar(f'Epoch {self.epoch + 1}/{self.end_epoch}', fill='#', max=len(self.train_loader))
        for i, batch in enumerate(self.train_loader):
            
            # <======= Feedforward 
            x, inits, features, kwargs, gt = prepare_batch(batch, self.device, self.train_stage=='stage2')
            timer['data'] = time.time() - start
            start = time.time()
            pred = self.network(x, inits, features, **kwargs)
            timer['forward'] = time.time() - start
            start = time.time()
            # =======>

            # <======= Backprop            
            loss, loss_dict = self.criterion(pred, gt)
            timer['loss'] = time.time() - start
            start = time.time()
            
            # Clip gradients
            self.optimizer.zero_grad()
            loss.backward()
            torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0)
            self.optimizer.step()
            # =======>
            
            # <======= Log training info
            total_loss = loss
            losses.update(total_loss.item(), x.size(0))
            kp_2d_loss.update(loss_dict['2d'].item(), x.size(0))
            kp_3d_loss.update(loss_dict['3d'].item(), x.size(0))
            
            timer['backward'] = time.time() - start
            timer['batch'] = timer['data'] + timer['forward'] + timer['loss'] + timer['backward']
            start = time.time()

            summary_string = f'({i + 1}/{len(self.train_loader)}) | Total: {bar.elapsed_td} ' \
                            f'| loss: {losses.avg:.2f} | 2d: {kp_2d_loss.avg:.2f} ' \
                            f'| 3d: {kp_3d_loss.avg:.2f} '

            for k, v in loss_dict.items():
                if k in self.summary_loss_keys: 
                    summary_string += f' | {k}: {v:.2f}'
                if (i + 1) % self.summary_iter == 0:
                    self.writer.add_scalar('train_loss/'+k, v, global_step=self.train_global_step)

            if (i + 1) % self.summary_iter == 0:
                self.writer.add_scalar('train_loss/loss', total_loss.item(), global_step=self.train_global_step)

            self.train_global_step += 1
            bar.suffix = summary_string
            bar.next(1)
                
            if torch.isnan(total_loss):
                exit('Nan value in loss, exiting!...')
            # =======>

        logger.info(summary_string)
        bar.finish()

    def validate(self, ):
        self.network.eval()
        
        start = time.time()
        summary_string = ''
        bar = Bar('Validation', fill='#', max=len(self.valid_loader))

        if self.evaluation_accumulators is not None:
            for k,v in self.evaluation_accumulators.items():
                self.evaluation_accumulators[k] = []
        
        with torch.no_grad():
            for i, batch in enumerate(self.valid_loader):
                x, inits, features, kwargs, gt = prepare_batch(batch, self.device, self.train_stage=='stage2')
            
                # <======= Feedforward 
                pred = self.network(x, inits, features, **kwargs)
                
                # 3DPW dataset has groundtruth vertices
                # NOTE: Following SPIN, we compute PVE against ground truth from Gendered SMPL mesh
                smpl = build_body_model(self.device, batch_size=len(pred['verts_cam']), gender=batch['gender'][0])
                gt_output = smpl.get_output(
                    body_pose=transforms.rotation_6d_to_matrix(gt['pose'][0, :, 1:]),
                    global_orient=transforms.rotation_6d_to_matrix(gt['pose'][0, :, :1]),
                    betas=gt['betas'][0],
                    pose2rot=False
                )
                
                pred_j3d = torch.matmul(self.J_regressor_eval, pred['verts_cam']).cpu()
                target_j3d = torch.matmul(self.J_regressor_eval, gt_output.vertices).cpu()
                pred_verts = pred['verts_cam'].cpu()
                target_verts = gt_output.vertices.cpu()
                
                pred_j3d, target_j3d, pred_verts, target_verts = batch_align_by_pelvis(
                    [pred_j3d, target_j3d, pred_verts, target_verts], [2, 3]
                )
                
                self.evaluation_accumulators['pred_j3d'].append(pred_j3d.numpy())
                self.evaluation_accumulators['target_j3d'].append(target_j3d.numpy())
                pve = np.sqrt(np.sum((target_verts.numpy() - pred_verts.numpy()) ** 2, axis=-1)).mean(-1) * 1e3
                self.evaluation_accumulators['pve'].append(pve[:, None])
                # =======>
            
                batch_time = time.time() - start

                summary_string = f'({i + 1}/{len(self.valid_loader)}) | batch: {batch_time * 10.0:.4}ms | ' \
                                f'Total: {bar.elapsed_td} | ETA: {bar.eta_td:}'

                self.valid_global_step += 1
                bar.suffix = summary_string
                bar.next()

        logger.info(summary_string)
            
        bar.finish()
    
    def evaluate(self, ):
        for k, v in self.evaluation_accumulators.items():
            self.evaluation_accumulators[k] = np.vstack(v)

        pred_j3ds = self.evaluation_accumulators['pred_j3d']
        target_j3ds = self.evaluation_accumulators['target_j3d']

        pred_j3ds = torch.from_numpy(pred_j3ds).float()
        target_j3ds = torch.from_numpy(target_j3ds).float()

        print(f'Evaluating on {pred_j3ds.shape[0]} number of poses...')
        errors = torch.sqrt(((pred_j3ds - target_j3ds) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
        S1_hat = batch_compute_similarity_transform_torch(pred_j3ds, target_j3ds)
        errors_pa = torch.sqrt(((S1_hat - target_j3ds) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()

        m2mm = 1000
        accel = np.mean(compute_accel(pred_j3ds)) * m2mm
        accel_err = np.mean(compute_error_accel(joints_pred=pred_j3ds, joints_gt=target_j3ds)) * m2mm
        mpjpe = np.mean(errors) * m2mm
        pa_mpjpe = np.mean(errors_pa) * m2mm
        
        eval_dict = {
            'mpjpe': mpjpe,
            'pa-mpjpe': pa_mpjpe,
            'accel': accel,
            'accel_err': accel_err
        }
        
        if 'pred_verts' in self.evaluation_accumulators.keys():
            eval_dict.update({'pve': self.evaluation_accumulators['pve'].mean()})

        log_str = f'Epoch {self.epoch}, '
        log_str += ' '.join([f'{k.upper()}: {v:.4f},'for k,v in eval_dict.items()])
        logger.info(log_str)

        for k,v in eval_dict.items():
            self.writer.add_scalar(f'error/{k}', v, global_step=self.epoch)

        # return (mpjpe + pa_mpjpe) / 2.
        return pa_mpjpe
    
    def save_model(self, performance, epoch):
        save_dict = {
            'epoch': epoch,
            'model': self.network.state_dict(),
            'performance': performance,
            'optimizer': self.optimizer.state_dict(),
        }

        filename = osp.join(self.logdir, 'checkpoint.pth.tar')
        torch.save(save_dict, filename)

        if self.performance_type == 'min':
            is_best = performance < self.best_performance
        else:
            is_best = performance > self.best_performance

        if is_best:
            logger.info('Best performance achived, saving it!')
            self.best_performance = performance
            shutil.copyfile(filename, osp.join(self.logdir, 'model_best.pth.tar'))

            with open(osp.join(self.logdir, 'best.txt'), 'w') as f:
                f.write(str(float(performance)))

    def fit(self):
        for epoch in range(self.start_epoch, self.end_epoch):
            self.epoch = epoch
            self.train()
            self.validate()
            performance = self.evaluate()

            self.criterion.step()
            if self.lr_scheduler is not None:
                self.lr_scheduler.step()

            # log the learning rate
            for param_group in self.optimizer.param_groups[:2]:
                print(f'Learning rate {param_group["lr"]}')
                self.writer.add_scalar('lr', param_group['lr'], global_step=self.epoch)

            logger.info(f'Epoch {epoch+1} performance: {performance:.4f}')

            self.save_model(performance, epoch)
            self.train_loader.dataset.prepare_video_batch()

        self.writer.close()
        
    def load_pretrained(self, model_path):
        if osp.isfile(model_path):
            checkpoint = torch.load(model_path)

            # network
            ignore_keys = ['smpl.body_pose', 'smpl.betas', 'smpl.global_orient', 'smpl.J_regressor_extra', 'smpl.J_regressor_eval']
            ignore_keys2 = [k for k in checkpoint['model'].keys() if 'integrator' in k]
            ignore_keys.extend(ignore_keys2)
            model_state_dict = {k: v for k, v in checkpoint['model'].items() if k not in ignore_keys}
            model_state_dict = {k: v for k, v in model_state_dict.items() if k in self.network.state_dict().keys()}
            self.network.load_state_dict(model_state_dict, strict=False)
            
            if self.resume:
                self.start_epoch = checkpoint['epoch']
                self.best_performance = checkpoint['performance']
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            
            logger.info(f"=> loaded checkpoint '{model_path}' "
                  f"(epoch {self.start_epoch}, performance {self.best_performance})")
        else:
            logger.info(f"=> no checkpoint found at '{model_path}'")