Spaces:
Sleeping
Sleeping
File size: 4,839 Bytes
20ae9ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import glob
import os
from multiprocessing import Process, Queue
from pathlib import Path
import cv2
import evo.main_ape as main_ape
import numpy as np
import torch
from evo.core import sync
from evo.core.metrics import PoseRelation
from evo.core.trajectory import PoseTrajectory3D
from evo.tools import file_interface
from dpvo.config import cfg
from dpvo.dpvo import DPVO
from dpvo.plot_utils import plot_trajectory
from dpvo.stream import image_stream
from dpvo.utils import Timer
SKIP = 0
def show_image(image, t=0):
image = image.permute(1, 2, 0).cpu().numpy()
cv2.imshow('image', image / 255.0)
cv2.waitKey(t)
@torch.no_grad()
def run(cfg, network, imagedir, calib, stride=1, viz=False, show_img=False):
slam = None
queue = Queue(maxsize=8)
reader = Process(target=image_stream, args=(queue, imagedir, calib, stride, 0))
reader.start()
while 1:
(t, image, intrinsics) = queue.get()
if t < 0: break
image = torch.from_numpy(image).permute(2,0,1).cuda()
intrinsics = torch.from_numpy(intrinsics).cuda()
if show_img:
show_image(image, 1)
if slam is None:
slam = DPVO(cfg, network, ht=image.shape[1], wd=image.shape[2], viz=viz)
with Timer("SLAM", enabled=False):
slam(t, image, intrinsics)
reader.join()
return slam.terminate()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--network', type=str, default='dpvo.pth')
parser.add_argument('--config', default="config/default.yaml")
parser.add_argument('--stride', type=int, default=2)
parser.add_argument('--viz', action="store_true")
parser.add_argument('--show_img', action="store_true")
parser.add_argument('--trials', type=int, default=1)
parser.add_argument('--eurocdir', default="datasets/EUROC")
parser.add_argument('--backend_thresh', type=float, default=64.0)
parser.add_argument('--plot', action="store_true")
parser.add_argument('--opts', nargs='+', default=[])
parser.add_argument('--save_trajectory', action="store_true")
args = parser.parse_args()
cfg.merge_from_file(args.config)
cfg.BACKEND_THRESH = args.backend_thresh
cfg.merge_from_list(args.opts)
print("\nRunning with config...")
print(cfg, "\n")
torch.manual_seed(1234)
euroc_scenes = [
"MH_01_easy",
"MH_02_easy",
"MH_03_medium",
"MH_04_difficult",
"MH_05_difficult",
"V1_01_easy",
"V1_02_medium",
"V1_03_difficult",
"V2_01_easy",
"V2_02_medium",
"V2_03_difficult",
]
results = {}
for scene in euroc_scenes:
imagedir = os.path.join(args.eurocdir, scene, "mav0/cam0/data")
groundtruth = "datasets/euroc_groundtruth/{}.txt".format(scene)
scene_results = []
for i in range(args.trials):
traj_est, timestamps = run(cfg, args.network, imagedir, "calib/euroc.txt", args.stride, args.viz, args.show_img)
images_list = sorted(glob.glob(os.path.join(imagedir, "*.png")))[::args.stride]
tstamps = [float(x.split('/')[-1][:-4]) for x in images_list]
traj_est = PoseTrajectory3D(
positions_xyz=traj_est[:,:3],
orientations_quat_wxyz=traj_est[:, [6, 3, 4, 5]],
timestamps=np.array(tstamps))
traj_ref = file_interface.read_tum_trajectory_file(groundtruth)
traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est)
result = main_ape.ape(traj_ref, traj_est, est_name='traj',
pose_relation=PoseRelation.translation_part, align=True, correct_scale=True)
ate_score = result.stats["rmse"]
if args.plot:
scene_name = '_'.join(scene.split('/')[1:]).title()
Path("trajectory_plots").mkdir(exist_ok=True)
plot_trajectory(traj_est, traj_ref, f"Euroc {scene} Trial #{i+1} (ATE: {ate_score:.03f})",
f"trajectory_plots/Euroc_{scene}_Trial{i+1:02d}.pdf", align=True, correct_scale=True)
if args.save_trajectory:
Path("saved_trajectories").mkdir(exist_ok=True)
file_interface.write_tum_trajectory_file(f"saved_trajectories/Euroc_{scene}_Trial{i+1:02d}.txt", traj_est)
scene_results.append(ate_score)
results[scene] = np.median(scene_results)
print(scene, sorted(scene_results))
xs = []
for scene in results:
print(scene, results[scene])
xs.append(results[scene])
print("AVG: ", np.mean(xs))
|