File size: 8,813 Bytes
c87d1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import torch
from torch import nn
import numpy as np

from configs import constants as _C
from lib.models.layers import (MotionEncoder, MotionDecoder, TrajectoryDecoder, TrajectoryRefiner, Integrator, 
                               rollout_global_motion, reset_root_velocity, compute_camera_motion)
from lib.utils.transforms import axis_angle_to_matrix


class Network(nn.Module):
    def __init__(self, 

                 smpl,

                 pose_dr=0.1,

                 d_embed=512,

                 n_layers=3,

                 d_feat=2048,

                 rnn_type='LSTM',

                 **kwargs

                 ):
        super().__init__()
        
        n_joints = _C.KEYPOINTS.NUM_JOINTS
        self.smpl = smpl
        in_dim = n_joints * 2 + 3
        d_context = d_embed + n_joints * 3
        
        self.mask_embedding = nn.Parameter(torch.zeros(1, 1, n_joints, 2))        
        
        # Module 1. Motion Encoder
        self.motion_encoder = MotionEncoder(in_dim=in_dim, 
                                            d_embed=d_embed,
                                            pose_dr=pose_dr,
                                            rnn_type=rnn_type,
                                            n_layers=n_layers,
                                            n_joints=n_joints)
        
        self.trajectory_decoder = TrajectoryDecoder(d_embed=d_context,
                                                    rnn_type=rnn_type,
                                                    n_layers=n_layers)
        
        # Module 3. Feature Integrator
        self.integrator = Integrator(in_channel=d_feat + d_context, 
                                     out_channel=d_context)
        
        # Module 4. Motion Decoder
        self.motion_decoder = MotionDecoder(d_embed=d_context,
                                            rnn_type=rnn_type,
                                            n_layers=n_layers)
        
        # Module 5. Trajectory Refiner
        self.trajectory_refiner = TrajectoryRefiner(d_embed=d_context,
                                                    d_hidden=d_embed,
                                                    rnn_type=rnn_type,
                                                    n_layers=2)
    
    def compute_global_feet(self, root_world, trans):
        # # Compute world-coordinate motion
        cam_R, cam_T = compute_camera_motion(self.output, self.pred_pose[:, :, :6], root_world, trans, self.pred_cam)
        feet_cam = self.output.feet.reshape(self.b, self.f, -1, 3) + self.output.full_cam.reshape(self.b, self.f, 1, 3)
        feet_world = (cam_R.mT @ (feet_cam - cam_T.unsqueeze(-2)).mT).mT
        
        return feet_world, cam_R
    
    def forward_smpl(self, **kwargs):
        self.output = self.smpl(self.pred_pose, 
                                self.pred_shape,
                                cam=self.pred_cam,
                                return_full_pose=not self.training,
                                **kwargs,
                                )

        from loguru import logger
        logger.info(f"Output Joints: {self.output.joints}")
        logger.info(f"Output Vertices: {self.output.vertices}")

        # Save joints and vertices as .npy arrays

        np.save('joints.npy', self.output.joints.cpu().numpy())
        np.save('vertices.npy', self.output.vertices.cpu().numpy())
        
        # Feet location in global coordinate
        root_world, trans = rollout_global_motion(self.pred_root, self.pred_vel)
        feet_world, cam_R = self.compute_global_feet(root_world, trans)
        
        # Return output
        output = {'feet': feet_world,
                  'contact': self.pred_contact,
                  'pose': self.pred_pose, 
                  'betas': self.pred_shape, 
                  'cam': self.pred_cam,
                  'poses_root_cam': self.output.global_orient,
                  'poses_root_r6d': self.pred_root,
                  'vel_root': self.pred_vel,
                  'pose_root': self.pred_root,
                  'verts_cam': self.output.vertices}
        
        if self.training:
            output.update({
                'kp3d': self.output.joints,
                'kp3d_nn': self.pred_kp3d,
                'full_kp2d': self.output.full_joints2d,
                'weak_kp2d': self.output.weak_joints2d,
                'R': cam_R,
            })
        else:
            output.update({
                'poses_root_r6d': self.pred_root,
                'trans_cam': self.output.full_cam,
                'poses_body': self.output.body_pose})
        
        return output        
    
    
    def preprocess(self, x, mask):
        self.b, self.f = x.shape[:2]
        
        # Treat masked keypoints
        mask_embedding = mask.unsqueeze(-1) * self.mask_embedding
        _mask = mask.unsqueeze(-1).repeat(1, 1, 1, 2).reshape(self.b, self.f, -1)
        _mask = torch.cat((_mask, torch.zeros_like(_mask[..., :3])), dim=-1)
        _mask_embedding = mask_embedding.reshape(self.b, self.f, -1)
        _mask_embedding = torch.cat((_mask_embedding, torch.zeros_like(_mask_embedding[..., :3])), dim=-1)
        x[_mask] = 0.0
        x = x + _mask_embedding
        return x
    
    
    def rollout(self, output, pred_root, pred_vel, return_y_up):
        root_world, trans_world = rollout_global_motion(pred_root, pred_vel)
        
        if return_y_up:
            yup2ydown = axis_angle_to_matrix(torch.tensor([[np.pi, 0, 0]])).float().to(root_world.device)
            root_world = yup2ydown.mT @ root_world
            trans_world = (yup2ydown.mT @ trans_world.unsqueeze(-1)).squeeze(-1)
            
        output.update({
            'poses_root_world': root_world,
            'trans_world': trans_world,
        })
        
        return output

        
    def refine_trajectory(self, output, cam_angvel, return_y_up, **kwargs):
        
        # --------- Refine trajectory --------- #
        update_vel = reset_root_velocity(self.smpl, self.output, self.pred_contact, self.pred_root, self.pred_vel, thr=0.5)
        output = self.trajectory_refiner(self.old_motion_context, update_vel, output, cam_angvel, return_y_up=return_y_up)
        # --------- #
        
        # Do rollout
        output = self.rollout(output, output['poses_root_r6d_refined'], output['vel_root_refined'], return_y_up)

        # ---------  Compute refined feet --------- #
        if self.training:
            feet_world, cam_R = self.compute_global_feet(output['poses_root_world'], output['trans_world'])
            output.update({'feet_refined': feet_world})

        return output
        
    
    def forward(self, x, inits, img_features=None, mask=None, init_root=None, cam_angvel=None,

                cam_intrinsics=None, bbox=None, res=None, return_y_up=False, refine_traj=True, **kwargs):

        x = self.preprocess(x, mask)
        init_kp, init_smpl = inits
        
        # --------- Inference --------- #
        # Stage 1. Encode motion
        pred_kp3d, motion_context = self.motion_encoder(x, init_kp)
        self.old_motion_context = motion_context.detach().clone()
        
        # Stage 2. Decode global trajectory
        pred_root, pred_vel = self.trajectory_decoder(motion_context, init_root, cam_angvel)
        
        # Stage 3. Integrate features
        if img_features is not None and self.integrator is not None:
            motion_context = self.integrator(motion_context, img_features)
            
        # Stage 4. Decode SMPL motion
        pred_pose, pred_shape, pred_cam, pred_contact = self.motion_decoder(motion_context, init_smpl)
        # --------- #
        
        # --------- Register predictions --------- #
        self.pred_kp3d = pred_kp3d
        self.pred_root = pred_root
        self.pred_vel = pred_vel
        self.pred_pose = pred_pose
        self.pred_shape = pred_shape
        self.pred_cam = pred_cam
        self.pred_contact = pred_contact
        # --------- #
        
        # --------- Build SMPL --------- #
        output = self.forward_smpl(cam_intrinsics=cam_intrinsics, bbox=bbox, res=res)
        # --------- #
        
        # --------- Refine trajectory --------- #
        if refine_traj:
            output = self.refine_trajectory(output, cam_angvel, return_y_up)
        else:
            output = self.rollout(output, self.pred_root, self.pred_vel, return_y_up)
        # --------- #
        
        return output