Spaces:
Sleeping
Sleeping
File size: 10,488 Bytes
c87d1bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import cv2
import torch
import numpy as np
from pytorch3d.renderer import (
PerspectiveCameras,
TexturesVertex,
PointLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
)
from pytorch3d.structures import Meshes
from pytorch3d.structures.meshes import join_meshes_as_scene
from pytorch3d.renderer.cameras import look_at_rotation
from .tools import get_colors, checkerboard_geometry
def overlay_image_onto_background(image, mask, bbox, background):
if isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
if isinstance(mask, torch.Tensor):
mask = mask.detach().cpu().numpy()
out_image = background.copy()
bbox = bbox[0].int().cpu().numpy().copy()
roi_image = out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]]
roi_image[mask] = image[mask]
out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]] = roi_image
return out_image
def update_intrinsics_from_bbox(K_org, bbox):
device, dtype = K_org.device, K_org.dtype
K = torch.zeros((K_org.shape[0], 4, 4)
).to(device=device, dtype=dtype)
K[:, :3, :3] = K_org.clone()
K[:, 2, 2] = 0
K[:, 2, -1] = 1
K[:, -1, 2] = 1
image_sizes = []
for idx, bbox in enumerate(bbox):
left, upper, right, lower = bbox
cx, cy = K[idx, 0, 2], K[idx, 1, 2]
new_cx = cx - left
new_cy = cy - upper
new_height = max(lower - upper, 1)
new_width = max(right - left, 1)
new_cx = new_width - new_cx
new_cy = new_height - new_cy
K[idx, 0, 2] = new_cx
K[idx, 1, 2] = new_cy
image_sizes.append((int(new_height), int(new_width)))
return K, image_sizes
def perspective_projection(x3d, K, R=None, T=None):
if R != None:
x3d = torch.matmul(R, x3d.transpose(1, 2)).transpose(1, 2)
if T != None:
x3d = x3d + T.transpose(1, 2)
x2d = torch.div(x3d, x3d[..., 2:])
x2d = torch.matmul(K, x2d.transpose(-1, -2)).transpose(-1, -2)[..., :2]
return x2d
def compute_bbox_from_points(X, img_w, img_h, scaleFactor=1.2):
left = torch.clamp(X.min(1)[0][:, 0], min=0, max=img_w)
right = torch.clamp(X.max(1)[0][:, 0], min=0, max=img_w)
top = torch.clamp(X.min(1)[0][:, 1], min=0, max=img_h)
bottom = torch.clamp(X.max(1)[0][:, 1], min=0, max=img_h)
cx = (left + right) / 2
cy = (top + bottom) / 2
width = (right - left)
height = (bottom - top)
new_left = torch.clamp(cx - width/2 * scaleFactor, min=0, max=img_w-1)
new_right = torch.clamp(cx + width/2 * scaleFactor, min=1, max=img_w)
new_top = torch.clamp(cy - height / 2 * scaleFactor, min=0, max=img_h-1)
new_bottom = torch.clamp(cy + height / 2 * scaleFactor, min=1, max=img_h)
bbox = torch.stack((new_left.detach(), new_top.detach(),
new_right.detach(), new_bottom.detach())).int().float().T
return bbox
class Renderer():
def __init__(self, width, height, focal_length, device, faces=None):
self.width = width
self.height = height
self.focal_length = focal_length
self.device = device
if faces is not None:
self.faces = torch.from_numpy(
(faces).astype('int')
).unsqueeze(0).to(self.device)
self.initialize_camera_params()
self.lights = PointLights(device=device, location=[[0.0, 0.0, -10.0]])
self.create_renderer()
def create_renderer(self):
self.renderer = MeshRenderer(
rasterizer=MeshRasterizer(
raster_settings=RasterizationSettings(
image_size=self.image_sizes[0],
blur_radius=1e-5),
),
shader=SoftPhongShader(
device=self.device,
lights=self.lights,
)
)
def create_camera(self, R=None, T=None):
if R is not None:
self.R = R.clone().view(1, 3, 3).to(self.device)
if T is not None:
self.T = T.clone().view(1, 3).to(self.device)
return PerspectiveCameras(
device=self.device,
R=self.R.mT,
T=self.T,
K=self.K_full,
image_size=self.image_sizes,
in_ndc=False)
def initialize_camera_params(self):
"""Hard coding for camera parameters
TODO: Do some soft coding"""
# Extrinsics
self.R = torch.diag(
torch.tensor([1, 1, 1])
).float().to(self.device).unsqueeze(0)
self.T = torch.tensor(
[0, 0, 0]
).unsqueeze(0).float().to(self.device)
# Intrinsics
self.K = torch.tensor(
[[self.focal_length, 0, self.width/2],
[0, self.focal_length, self.height/2],
[0, 0, 1]]
).unsqueeze(0).float().to(self.device)
self.bboxes = torch.tensor([[0, 0, self.width, self.height]]).float()
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, self.bboxes)
self.cameras = self.create_camera()
def set_ground(self, length, center_x, center_z):
device = self.device
v, f, vc, fc = map(torch.from_numpy, checkerboard_geometry(length=length, c1=center_x, c2=center_z, up="y"))
v, f, vc = v.to(device), f.to(device), vc.to(device)
self.ground_geometry = [v, f, vc]
def update_bbox(self, x3d, scale=2.0, mask=None):
""" Update bbox of cameras from the given 3d points
x3d: input 3D keypoints (or vertices), (num_frames, num_points, 3)
"""
if x3d.size(-1) != 3:
x2d = x3d.unsqueeze(0)
else:
x2d = perspective_projection(x3d.unsqueeze(0), self.K, self.R, self.T.reshape(1, 3, 1))
if mask is not None:
x2d = x2d[:, ~mask]
bbox = compute_bbox_from_points(x2d, self.width, self.height, scale)
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
def reset_bbox(self,):
bbox = torch.zeros((1, 4)).float().to(self.device)
bbox[0, 2] = self.width
bbox[0, 3] = self.height
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
def render_mesh(self, vertices, background, colors=[0.8, 0.8, 0.8]):
self.update_bbox(vertices[::50], scale=1.2)
vertices = vertices.unsqueeze(0)
if colors[0] > 1: colors = [c / 255. for c in colors]
verts_features = torch.tensor(colors).reshape(1, 1, 3).to(device=vertices.device, dtype=vertices.dtype)
verts_features = verts_features.repeat(1, vertices.shape[1], 1)
textures = TexturesVertex(verts_features=verts_features)
mesh = Meshes(verts=vertices,
faces=self.faces,
textures=textures,)
materials = Materials(
device=self.device,
specular_color=(colors, ),
shininess=0
)
results = torch.flip(
self.renderer(mesh, materials=materials, cameras=self.cameras, lights=self.lights),
[1, 2]
)
image = results[0, ..., :3] * 255
mask = results[0, ..., -1] > 1e-3
image = overlay_image_onto_background(image, mask, self.bboxes, background.copy())
self.reset_bbox()
return image
def render_with_ground(self, verts, faces, colors, cameras, lights):
"""
:param verts (B, V, 3)
:param faces (F, 3)
:param colors (B, 3)
"""
# (B, V, 3), (B, F, 3), (B, V, 3)
verts, faces, colors = prep_shared_geometry(verts, faces, colors)
# (V, 3), (F, 3), (V, 3)
gv, gf, gc = self.ground_geometry
verts = list(torch.unbind(verts, dim=0)) + [gv]
faces = list(torch.unbind(faces, dim=0)) + [gf]
colors = list(torch.unbind(colors, dim=0)) + [gc[..., :3]]
mesh = create_meshes(verts, faces, colors)
materials = Materials(
device=self.device,
shininess=0
)
results = self.renderer(mesh, cameras=cameras, lights=lights, materials=materials)
image = (results[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
return image
def prep_shared_geometry(verts, faces, colors):
"""
:param verts (B, V, 3)
:param faces (F, 3)
:param colors (B, 4)
"""
B, V, _ = verts.shape
F, _ = faces.shape
colors = colors.unsqueeze(1).expand(B, V, -1)[..., :3]
faces = faces.unsqueeze(0).expand(B, F, -1)
return verts, faces, colors
def create_meshes(verts, faces, colors):
"""
:param verts (B, V, 3)
:param faces (B, F, 3)
:param colors (B, V, 3)
"""
textures = TexturesVertex(verts_features=colors)
meshes = Meshes(verts=verts, faces=faces, textures=textures)
return join_meshes_as_scene(meshes)
def get_global_cameras(verts, device, distance=5, position=(-5.0, 5.0, 0.0)):
positions = torch.tensor([position]).repeat(len(verts), 1)
targets = verts.mean(1)
directions = targets - positions
directions = directions / torch.norm(directions, dim=-1).unsqueeze(-1) * distance
positions = targets - directions
rotation = look_at_rotation(positions, targets, ).mT
translation = -(rotation @ positions.unsqueeze(-1)).squeeze(-1)
lights = PointLights(device=device, location=[position])
return rotation, translation, lights
def _get_global_cameras(verts, device, min_distance=3, chunk_size=100):
# split into smaller chunks to visualize
start_idxs = list(range(0, len(verts), chunk_size))
end_idxs = [min(start_idx + chunk_size, len(verts)) for start_idx in start_idxs]
Rs, Ts = [], []
for start_idx, end_idx in zip(start_idxs, end_idxs):
vert = verts[start_idx:end_idx].clone()
import pdb; pdb.set_trace() |