File size: 14,662 Bytes
f561f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# Some functions are borrowed from https://github.com/akanazawa/human_dynamics/blob/master/src/evaluation/eval_util.py
# Adhere to their licence to use these functions
from pathlib import Path

import torch
import numpy as np
from matplotlib import pyplot as plt


def compute_accel(joints):
    """

    Computes acceleration of 3D joints.

    Args:

        joints (Nx25x3).

    Returns:

        Accelerations (N-2).

    """
    velocities = joints[1:] - joints[:-1]
    acceleration = velocities[1:] - velocities[:-1]
    acceleration_normed = np.linalg.norm(acceleration, axis=2)
    return np.mean(acceleration_normed, axis=1)


def compute_error_accel(joints_gt, joints_pred, vis=None):
    """

    Computes acceleration error:

        1/(n-2) \sum_{i=1}^{n-1} X_{i-1} - 2X_i + X_{i+1}

    Note that for each frame that is not visible, three entries in the

    acceleration error should be zero'd out.

    Args:

        joints_gt (Nx14x3).

        joints_pred (Nx14x3).

        vis (N).

    Returns:

        error_accel (N-2).

    """
    # (N-2)x14x3
    accel_gt = joints_gt[:-2] - 2 * joints_gt[1:-1] + joints_gt[2:]
    accel_pred = joints_pred[:-2] - 2 * joints_pred[1:-1] + joints_pred[2:]

    normed = np.linalg.norm(accel_pred - accel_gt, axis=2)

    if vis is None:
        new_vis = np.ones(len(normed), dtype=bool)
    else:
        invis = np.logical_not(vis)
        invis1 = np.roll(invis, -1)
        invis2 = np.roll(invis, -2)
        new_invis = np.logical_or(invis, np.logical_or(invis1, invis2))[:-2]
        new_vis = np.logical_not(new_invis)

    return np.mean(normed[new_vis], axis=1)


def compute_error_verts(pred_verts, target_verts=None, target_theta=None):
    """

    Computes MPJPE over 6890 surface vertices.

    Args:

        verts_gt (Nx6890x3).

        verts_pred (Nx6890x3).

    Returns:

        error_verts (N).

    """

    if target_verts is None:
        from lib.models.smpl import SMPL_MODEL_DIR
        from lib.models.smpl import SMPL
        device = 'cpu'
        smpl = SMPL(
            SMPL_MODEL_DIR,
            batch_size=1, # target_theta.shape[0],
        ).to(device)

        betas = torch.from_numpy(target_theta[:,75:]).to(device)
        pose = torch.from_numpy(target_theta[:,3:75]).to(device)

        target_verts = []
        b_ = torch.split(betas, 5000)
        p_ = torch.split(pose, 5000)

        for b,p in zip(b_,p_):
            output = smpl(betas=b, body_pose=p[:, 3:], global_orient=p[:, :3], pose2rot=True)
            target_verts.append(output.vertices.detach().cpu().numpy())

        target_verts = np.concatenate(target_verts, axis=0)

    assert len(pred_verts) == len(target_verts)
    error_per_vert = np.sqrt(np.sum((target_verts - pred_verts) ** 2, axis=2))
    return np.mean(error_per_vert, axis=1)


def compute_similarity_transform(S1, S2):
    '''

    Computes a similarity transform (sR, t) that takes

    a set of 3D points S1 (3 x N) closest to a set of 3D points S2,

    where R is an 3x3 rotation matrix, t 3x1 translation, s scale.

    i.e. solves the orthogonal Procrutes problem.

    '''
    transposed = False
    if S1.shape[0] != 3 and S1.shape[0] != 2:
        S1 = S1.T
        S2 = S2.T
        transposed = True
    assert(S2.shape[1] == S1.shape[1])

    # 1. Remove mean.
    mu1 = S1.mean(axis=1, keepdims=True)
    mu2 = S2.mean(axis=1, keepdims=True)
    X1 = S1 - mu1
    X2 = S2 - mu2

    # 2. Compute variance of X1 used for scale.
    var1 = np.sum(X1**2)

    # 3. The outer product of X1 and X2.
    K = X1.dot(X2.T)

    # 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are
    # singular vectors of K.
    U, s, Vh = np.linalg.svd(K)
    V = Vh.T
    # Construct Z that fixes the orientation of R to get det(R)=1.
    Z = np.eye(U.shape[0])
    Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T)))
    # Construct R.
    R = V.dot(Z.dot(U.T))

    # 5. Recover scale.
    scale = np.trace(R.dot(K)) / var1

    # 6. Recover translation.
    t = mu2 - scale*(R.dot(mu1))

    # 7. Error:
    S1_hat = scale*R.dot(S1) + t

    if transposed:
        S1_hat = S1_hat.T

    return S1_hat


def compute_similarity_transform_torch(S1, S2):
    '''

    Computes a similarity transform (sR, t) that takes

    a set of 3D points S1 (3 x N) closest to a set of 3D points S2,

    where R is an 3x3 rotation matrix, t 3x1 translation, s scale.

    i.e. solves the orthogonal Procrutes problem.

    '''
    transposed = False
    if S1.shape[0] != 3 and S1.shape[0] != 2:
        S1 = S1.T
        S2 = S2.T
        transposed = True
    assert (S2.shape[1] == S1.shape[1])

    # 1. Remove mean.
    mu1 = S1.mean(axis=1, keepdims=True)
    mu2 = S2.mean(axis=1, keepdims=True)
    X1 = S1 - mu1
    X2 = S2 - mu2

    # print('X1', X1.shape)

    # 2. Compute variance of X1 used for scale.
    var1 = torch.sum(X1 ** 2)

    # print('var', var1.shape)

    # 3. The outer product of X1 and X2.
    K = X1.mm(X2.T)

    # 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are
    # singular vectors of K.
    U, s, V = torch.svd(K)
    # V = Vh.T
    # Construct Z that fixes the orientation of R to get det(R)=1.
    Z = torch.eye(U.shape[0], device=S1.device)
    Z[-1, -1] *= torch.sign(torch.det(U @ V.T))
    # Construct R.
    R = V.mm(Z.mm(U.T))

    # print('R', X1.shape)

    # 5. Recover scale.
    scale = torch.trace(R.mm(K)) / var1
    # print(R.shape, mu1.shape)
    # 6. Recover translation.
    t = mu2 - scale * (R.mm(mu1))
    # print(t.shape)

    # 7. Error:
    S1_hat = scale * R.mm(S1) + t

    if transposed:
        S1_hat = S1_hat.T

    return S1_hat


def batch_compute_similarity_transform_torch(S1, S2):
    '''

    Computes a similarity transform (sR, t) that takes

    a set of 3D points S1 (3 x N) closest to a set of 3D points S2,

    where R is an 3x3 rotation matrix, t 3x1 translation, s scale.

    i.e. solves the orthogonal Procrutes problem.

    '''
    transposed = False
    if S1.shape[0] != 3 and S1.shape[0] != 2:
        S1 = S1.permute(0,2,1)
        S2 = S2.permute(0,2,1)
        transposed = True
    assert(S2.shape[1] == S1.shape[1])

    # 1. Remove mean.
    mu1 = S1.mean(axis=-1, keepdims=True)
    mu2 = S2.mean(axis=-1, keepdims=True)

    X1 = S1 - mu1
    X2 = S2 - mu2

    # 2. Compute variance of X1 used for scale.
    var1 = torch.sum(X1**2, dim=1).sum(dim=1)

    # 3. The outer product of X1 and X2.
    K = X1.bmm(X2.permute(0,2,1))

    # 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are
    # singular vectors of K.
    U, s, V = torch.svd(K)

    # Construct Z that fixes the orientation of R to get det(R)=1.
    Z = torch.eye(U.shape[1], device=S1.device).unsqueeze(0)
    Z = Z.repeat(U.shape[0],1,1)
    Z[:,-1, -1] *= torch.sign(torch.det(U.bmm(V.permute(0,2,1))))

    # Construct R.
    R = V.bmm(Z.bmm(U.permute(0,2,1)))

    # 5. Recover scale.
    scale = torch.cat([torch.trace(x).unsqueeze(0) for x in R.bmm(K)]) / var1

    # 6. Recover translation.
    t = mu2 - (scale.unsqueeze(-1).unsqueeze(-1) * (R.bmm(mu1)))

    # 7. Error:
    S1_hat = scale.unsqueeze(-1).unsqueeze(-1) * R.bmm(S1) + t

    if transposed:
        S1_hat = S1_hat.permute(0,2,1)

    return S1_hat


def align_by_pelvis(joints):
    """

    Assumes joints is 14 x 3 in LSP order.

    Then hips are: [3, 2]

    Takes mid point of these points, then subtracts it.

    """

    left_id = 2
    right_id = 3

    pelvis = (joints[left_id, :] + joints[right_id, :]) / 2.0
    return joints - np.expand_dims(pelvis, axis=0)


def compute_errors(gt3ds, preds):
    """

    Gets MPJPE after pelvis alignment + MPJPE after Procrustes.

    Evaluates on the 14 common joints.

    Inputs:

      - gt3ds: N x 14 x 3

      - preds: N x 14 x 3

    """
    errors, errors_pa = [], []
    for i, (gt3d, pred) in enumerate(zip(gt3ds, preds)):
        gt3d = gt3d.reshape(-1, 3)
        # Root align.
        gt3d = align_by_pelvis(gt3d)
        pred3d = align_by_pelvis(pred)

        joint_error = np.sqrt(np.sum((gt3d - pred3d)**2, axis=1))
        errors.append(np.mean(joint_error))

        # Get PA error.
        pred3d_sym = compute_similarity_transform(pred3d, gt3d)
        pa_error = np.sqrt(np.sum((gt3d - pred3d_sym)**2, axis=1))
        errors_pa.append(np.mean(pa_error))

    return errors, errors_pa


def batch_align_by_pelvis(data_list, pelvis_idxs):
    """

    Assumes data is given as [pred_j3d, target_j3d, pred_verts, target_verts].

    Each data is in shape of (frames, num_points, 3)

    Pelvis is notated as one / two joints indices.

    Align all data to the corresponding pelvis location.

    """

    pred_j3d, target_j3d, pred_verts, target_verts = data_list
    
    pred_pelvis = pred_j3d[:, pelvis_idxs].mean(dim=1, keepdims=True).clone()
    target_pelvis = target_j3d[:, pelvis_idxs].mean(dim=1, keepdims=True).clone()
    
    # Align to the pelvis
    pred_j3d = pred_j3d - pred_pelvis
    target_j3d = target_j3d - target_pelvis
    pred_verts = pred_verts - pred_pelvis
    target_verts = target_verts - target_pelvis
    
    return (pred_j3d, target_j3d, pred_verts, target_verts)

def compute_jpe(S1, S2):
    return torch.sqrt(((S1 - S2) ** 2).sum(dim=-1)).mean(dim=-1).numpy()


# The functions below are borrowed from SLAHMR official implementation.
# Reference: https://github.com/vye16/slahmr/blob/main/slahmr/eval/tools.py
def global_align_joints(gt_joints, pred_joints):
    """

    :param gt_joints (T, J, 3)

    :param pred_joints (T, J, 3)

    """
    s_glob, R_glob, t_glob = align_pcl(
        gt_joints.reshape(-1, 3), pred_joints.reshape(-1, 3)
    )
    pred_glob = (
        s_glob * torch.einsum("ij,tnj->tni", R_glob, pred_joints) + t_glob[None, None]
    )
    return pred_glob


def first_align_joints(gt_joints, pred_joints):
    """

    align the first two frames

    :param gt_joints (T, J, 3)

    :param pred_joints (T, J, 3)

    """
    # (1, 1), (1, 3, 3), (1, 3)
    s_first, R_first, t_first = align_pcl(
        gt_joints[:2].reshape(1, -1, 3), pred_joints[:2].reshape(1, -1, 3)
    )
    pred_first = (
        s_first * torch.einsum("tij,tnj->tni", R_first, pred_joints) + t_first[:, None]
    )
    return pred_first


def local_align_joints(gt_joints, pred_joints):
    """

    :param gt_joints (T, J, 3)

    :param pred_joints (T, J, 3)

    """
    s_loc, R_loc, t_loc = align_pcl(gt_joints, pred_joints)
    pred_loc = (
        s_loc[:, None] * torch.einsum("tij,tnj->tni", R_loc, pred_joints)
        + t_loc[:, None]
    )
    return pred_loc


def align_pcl(Y, X, weight=None, fixed_scale=False):
    """align similarity transform to align X with Y using umeyama method

    X' = s * R * X + t is aligned with Y

    :param Y (*, N, 3) first trajectory

    :param X (*, N, 3) second trajectory

    :param weight (*, N, 1) optional weight of valid correspondences

    :returns s (*, 1), R (*, 3, 3), t (*, 3)

    """
    *dims, N, _ = Y.shape
    N = torch.ones(*dims, 1, 1) * N

    if weight is not None:
        Y = Y * weight
        X = X * weight
        N = weight.sum(dim=-2, keepdim=True)  # (*, 1, 1)

    # subtract mean
    my = Y.sum(dim=-2) / N[..., 0]  # (*, 3)
    mx = X.sum(dim=-2) / N[..., 0]
    y0 = Y - my[..., None, :]  # (*, N, 3)
    x0 = X - mx[..., None, :]

    if weight is not None:
        y0 = y0 * weight
        x0 = x0 * weight

    # correlation
    C = torch.matmul(y0.transpose(-1, -2), x0) / N  # (*, 3, 3)
    U, D, Vh = torch.linalg.svd(C)  # (*, 3, 3), (*, 3), (*, 3, 3)

    S = torch.eye(3).reshape(*(1,) * (len(dims)), 3, 3).repeat(*dims, 1, 1)
    neg = torch.det(U) * torch.det(Vh.transpose(-1, -2)) < 0
    S[neg, 2, 2] = -1

    R = torch.matmul(U, torch.matmul(S, Vh))  # (*, 3, 3)

    D = torch.diag_embed(D)  # (*, 3, 3)
    if fixed_scale:
        s = torch.ones(*dims, 1, device=Y.device, dtype=torch.float32)
    else:
        var = torch.sum(torch.square(x0), dim=(-1, -2), keepdim=True) / N  # (*, 1, 1)
        s = (
            torch.diagonal(torch.matmul(D, S), dim1=-2, dim2=-1).sum(
                dim=-1, keepdim=True
            )
            / var[..., 0]
        )  # (*, 1)

    t = my - s * torch.matmul(R, mx[..., None])[..., 0]  # (*, 3)

    return s, R, t


def compute_foot_sliding(target_output, pred_output, masks, thr=1e-2):
    """compute foot sliding error

    The foot ground contact label is computed by the threshold of 1 cm/frame

    Args:

        target_output (SMPL ModelOutput).

        pred_output (SMPL ModelOutput).

        masks (N).

    Returns:

        error (N frames in contact).

    """
    
    # Foot vertices idxs
    foot_idxs = [3216, 3387, 6617, 6787]
    
    # Compute contact label
    foot_loc = target_output.vertices[masks][:, foot_idxs]
    foot_disp = (foot_loc[1:] - foot_loc[:-1]).norm(2, dim=-1)
    contact = foot_disp[:] < thr
    
    pred_feet_loc = pred_output.vertices[:, foot_idxs]
    pred_disp = (pred_feet_loc[1:] - pred_feet_loc[:-1]).norm(2, dim=-1)
    
    error = pred_disp[contact]
    
    return error.cpu().numpy()


def compute_jitter(pred_output, fps=30):
    """compute jitter of the motion

    Args:

        pred_output (SMPL ModelOutput).

        fps (float).

    Returns:

        jitter (N-3).

    """
    
    pred3d = pred_output.joints[:, :24]
        
    pred_jitter = torch.norm(
        (pred3d[3:] - 3 * pred3d[2:-1] + 3 * pred3d[1:-2] - pred3d[:-3]) * (fps**3),
        dim=2,
    ).mean(dim=-1)
    
    return pred_jitter.cpu().numpy() / 10.0


def compute_rte(target_trans, pred_trans):
    # Compute the global alignment
    _, rot, trans = align_pcl(target_trans[None, :], pred_trans[None, :], fixed_scale=True)
    pred_trans_hat = (
        torch.einsum("tij,tnj->tni", rot, pred_trans[None, :]) + trans[None, :]
    )[0]
    
    # Compute the entire displacement of ground truth trajectory
    disps, disp = [], 0
    for p1, p2 in zip(target_trans, target_trans[1:]):
        delta = (p2 - p1).norm(2, dim=-1)
        disp += delta
        disps.append(disp)
    
    # Compute absolute root-translation-error (RTE)
    rte = torch.norm(target_trans - pred_trans_hat, 2, dim=-1)
    
    # Normalize it to the displacement
    return (rte / disp).numpy()