Spaces:
Sleeping
Sleeping
File size: 13,663 Bytes
f561f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import time
import torch
import shutil
import logging
import numpy as np
import os.path as osp
from progress.bar import Bar
from configs import constants as _C
from lib.utils import transforms
from lib.utils.utils import AverageMeter, prepare_batch
from lib.eval.eval_utils import (
compute_accel,
compute_error_accel,
batch_align_by_pelvis,
batch_compute_similarity_transform_torch,
)
from lib.models import build_body_model
logger = logging.getLogger(__name__)
class Trainer():
def __init__(self,
data_loaders,
network,
optimizer,
criterion=None,
train_stage='syn',
start_epoch=0,
checkpoint=None,
end_epoch=999,
lr_scheduler=None,
device=None,
writer=None,
debug=False,
resume=False,
logdir='output',
performance_type='min',
summary_iter=1,
):
self.train_loader, self.valid_loader = data_loaders
# Model and optimizer
self.network = network
self.optimizer = optimizer
# Training parameters
self.train_stage = train_stage
self.start_epoch = start_epoch
self.end_epoch = end_epoch
self.criterion = criterion
self.lr_scheduler = lr_scheduler
self.device = device
self.writer = writer
self.debug = debug
self.resume = resume
self.logdir = logdir
self.summary_iter = summary_iter
self.performance_type = performance_type
self.train_global_step = 0
self.valid_global_step = 0
self.epoch = 0
self.best_performance = float('inf') if performance_type == 'min' else -float('inf')
self.summary_loss_keys = ['pose']
self.evaluation_accumulators = dict.fromkeys(
['pred_j3d', 'target_j3d', 'pve'])# 'pred_verts', 'target_verts'])
self.J_regressor_eval = torch.from_numpy(
np.load(_C.BMODEL.JOINTS_REGRESSOR_H36M)
)[_C.KEYPOINTS.H36M_TO_J14, :].unsqueeze(0).float().to(device)
if self.writer is None:
from torch.utils.tensorboard import SummaryWriter
self.writer = SummaryWriter(log_dir=self.logdir)
if self.device is None:
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
if checkpoint is not None:
self.load_pretrained(checkpoint)
def train(self, ):
# Single epoch training routine
losses = AverageMeter()
kp_2d_loss = AverageMeter()
kp_3d_loss = AverageMeter()
timer = {
'data': 0,
'forward': 0,
'loss': 0,
'backward': 0,
'batch': 0,
}
self.network.train()
start = time.time()
summary_string = ''
bar = Bar(f'Epoch {self.epoch + 1}/{self.end_epoch}', fill='#', max=len(self.train_loader))
for i, batch in enumerate(self.train_loader):
# <======= Feedforward
x, inits, features, kwargs, gt = prepare_batch(batch, self.device, self.train_stage=='stage2')
timer['data'] = time.time() - start
start = time.time()
pred = self.network(x, inits, features, **kwargs)
timer['forward'] = time.time() - start
start = time.time()
# =======>
# <======= Backprop
loss, loss_dict = self.criterion(pred, gt)
timer['loss'] = time.time() - start
start = time.time()
# Clip gradients
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0)
self.optimizer.step()
# =======>
# <======= Log training info
total_loss = loss
losses.update(total_loss.item(), x.size(0))
kp_2d_loss.update(loss_dict['2d'].item(), x.size(0))
kp_3d_loss.update(loss_dict['3d'].item(), x.size(0))
timer['backward'] = time.time() - start
timer['batch'] = timer['data'] + timer['forward'] + timer['loss'] + timer['backward']
start = time.time()
summary_string = f'({i + 1}/{len(self.train_loader)}) | Total: {bar.elapsed_td} ' \
f'| loss: {losses.avg:.2f} | 2d: {kp_2d_loss.avg:.2f} ' \
f'| 3d: {kp_3d_loss.avg:.2f} '
for k, v in loss_dict.items():
if k in self.summary_loss_keys:
summary_string += f' | {k}: {v:.2f}'
if (i + 1) % self.summary_iter == 0:
self.writer.add_scalar('train_loss/'+k, v, global_step=self.train_global_step)
if (i + 1) % self.summary_iter == 0:
self.writer.add_scalar('train_loss/loss', total_loss.item(), global_step=self.train_global_step)
self.train_global_step += 1
bar.suffix = summary_string
bar.next(1)
if torch.isnan(total_loss):
exit('Nan value in loss, exiting!...')
# =======>
logger.info(summary_string)
bar.finish()
def validate(self, ):
self.network.eval()
start = time.time()
summary_string = ''
bar = Bar('Validation', fill='#', max=len(self.valid_loader))
if self.evaluation_accumulators is not None:
for k,v in self.evaluation_accumulators.items():
self.evaluation_accumulators[k] = []
with torch.no_grad():
for i, batch in enumerate(self.valid_loader):
x, inits, features, kwargs, gt = prepare_batch(batch, self.device, self.train_stage=='stage2')
# <======= Feedforward
pred = self.network(x, inits, features, **kwargs)
# 3DPW dataset has groundtruth vertices
# NOTE: Following SPIN, we compute PVE against ground truth from Gendered SMPL mesh
smpl = build_body_model(self.device, batch_size=len(pred['verts_cam']), gender=batch['gender'][0])
gt_output = smpl.get_output(
body_pose=transforms.rotation_6d_to_matrix(gt['pose'][0, :, 1:]),
global_orient=transforms.rotation_6d_to_matrix(gt['pose'][0, :, :1]),
betas=gt['betas'][0],
pose2rot=False
)
pred_j3d = torch.matmul(self.J_regressor_eval, pred['verts_cam']).cpu()
target_j3d = torch.matmul(self.J_regressor_eval, gt_output.vertices).cpu()
pred_verts = pred['verts_cam'].cpu()
target_verts = gt_output.vertices.cpu()
pred_j3d, target_j3d, pred_verts, target_verts = batch_align_by_pelvis(
[pred_j3d, target_j3d, pred_verts, target_verts], [2, 3]
)
self.evaluation_accumulators['pred_j3d'].append(pred_j3d.numpy())
self.evaluation_accumulators['target_j3d'].append(target_j3d.numpy())
pve = np.sqrt(np.sum((target_verts.numpy() - pred_verts.numpy()) ** 2, axis=-1)).mean(-1) * 1e3
self.evaluation_accumulators['pve'].append(pve[:, None])
# =======>
batch_time = time.time() - start
summary_string = f'({i + 1}/{len(self.valid_loader)}) | batch: {batch_time * 10.0:.4}ms | ' \
f'Total: {bar.elapsed_td} | ETA: {bar.eta_td:}'
self.valid_global_step += 1
bar.suffix = summary_string
bar.next()
logger.info(summary_string)
bar.finish()
def evaluate(self, ):
for k, v in self.evaluation_accumulators.items():
self.evaluation_accumulators[k] = np.vstack(v)
pred_j3ds = self.evaluation_accumulators['pred_j3d']
target_j3ds = self.evaluation_accumulators['target_j3d']
pred_j3ds = torch.from_numpy(pred_j3ds).float()
target_j3ds = torch.from_numpy(target_j3ds).float()
print(f'Evaluating on {pred_j3ds.shape[0]} number of poses...')
errors = torch.sqrt(((pred_j3ds - target_j3ds) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
S1_hat = batch_compute_similarity_transform_torch(pred_j3ds, target_j3ds)
errors_pa = torch.sqrt(((S1_hat - target_j3ds) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
m2mm = 1000
accel = np.mean(compute_accel(pred_j3ds)) * m2mm
accel_err = np.mean(compute_error_accel(joints_pred=pred_j3ds, joints_gt=target_j3ds)) * m2mm
mpjpe = np.mean(errors) * m2mm
pa_mpjpe = np.mean(errors_pa) * m2mm
eval_dict = {
'mpjpe': mpjpe,
'pa-mpjpe': pa_mpjpe,
'accel': accel,
'accel_err': accel_err
}
if 'pred_verts' in self.evaluation_accumulators.keys():
eval_dict.update({'pve': self.evaluation_accumulators['pve'].mean()})
log_str = f'Epoch {self.epoch}, '
log_str += ' '.join([f'{k.upper()}: {v:.4f},'for k,v in eval_dict.items()])
logger.info(log_str)
for k,v in eval_dict.items():
self.writer.add_scalar(f'error/{k}', v, global_step=self.epoch)
# return (mpjpe + pa_mpjpe) / 2.
return pa_mpjpe
def save_model(self, performance, epoch):
save_dict = {
'epoch': epoch,
'model': self.network.state_dict(),
'performance': performance,
'optimizer': self.optimizer.state_dict(),
}
filename = osp.join(self.logdir, 'checkpoint.pth.tar')
torch.save(save_dict, filename)
if self.performance_type == 'min':
is_best = performance < self.best_performance
else:
is_best = performance > self.best_performance
if is_best:
logger.info('Best performance achived, saving it!')
self.best_performance = performance
shutil.copyfile(filename, osp.join(self.logdir, 'model_best.pth.tar'))
with open(osp.join(self.logdir, 'best.txt'), 'w') as f:
f.write(str(float(performance)))
def fit(self):
for epoch in range(self.start_epoch, self.end_epoch):
self.epoch = epoch
self.train()
self.validate()
performance = self.evaluate()
self.criterion.step()
if self.lr_scheduler is not None:
self.lr_scheduler.step()
# log the learning rate
for param_group in self.optimizer.param_groups[:2]:
print(f'Learning rate {param_group["lr"]}')
self.writer.add_scalar('lr', param_group['lr'], global_step=self.epoch)
logger.info(f'Epoch {epoch+1} performance: {performance:.4f}')
self.save_model(performance, epoch)
self.train_loader.dataset.prepare_video_batch()
self.writer.close()
def load_pretrained(self, model_path):
if osp.isfile(model_path):
checkpoint = torch.load(model_path)
# network
ignore_keys = ['smpl.body_pose', 'smpl.betas', 'smpl.global_orient', 'smpl.J_regressor_extra', 'smpl.J_regressor_eval']
ignore_keys2 = [k for k in checkpoint['model'].keys() if 'integrator' in k]
ignore_keys.extend(ignore_keys2)
model_state_dict = {k: v for k, v in checkpoint['model'].items() if k not in ignore_keys}
model_state_dict = {k: v for k, v in model_state_dict.items() if k in self.network.state_dict().keys()}
self.network.load_state_dict(model_state_dict, strict=False)
if self.resume:
self.start_epoch = checkpoint['epoch']
self.best_performance = checkpoint['performance']
self.optimizer.load_state_dict(checkpoint['optimizer'])
logger.info(f"=> loaded checkpoint '{model_path}' "
f"(epoch {self.start_epoch}, performance {self.best_performance})")
else:
logger.info(f"=> no checkpoint found at '{model_path}'") |