File size: 10,287 Bytes
20ae9ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os

import kornia as K
import kornia.feature as KF
import numpy as np
import pypose as pp
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from einops import asnumpy, rearrange, repeat
from torch_scatter import scatter_max

from .. import fastba
from .. import projective_ops as pops
from ..lietorch import SE3
from .optim_utils import SE3_to_Sim3, make_pypose_Sim3, ransac_umeyama, run_DPVO_PGO
from .retrieval import ImageCache, RetrievalDBOW


class LongTermLoopClosure:

    def __init__(self, cfg, patchgraph):
        self.cfg = cfg

        # Data structures to manage retrieval
        self.retrieval = RetrievalDBOW()
        self.imcache = ImageCache()

        # Process to run PGO in parallel
        self.lc_pool = mp.Pool(processes=1)
        self.lc_process = self.lc_pool.apply_async(os.getpid)
        self.manager = mp.Manager()
        self.result_queue = self.manager.Queue()
        self.lc_in_progress = False

        # Patch graph + loop edges
        self.pg = patchgraph
        self.loop_ii = torch.zeros(0, dtype=torch.long)
        self.loop_jj = torch.zeros(0, dtype=torch.long)

        self.lc_count = 0

        # warmup the jit compiler
        ransac_umeyama(np.random.randn(3,3), np.random.randn(3,3), iterations=200, threshold=0.01)

        self.detector = KF.DISK.from_pretrained("depth").to("cuda").eval()
        self.matcher = KF.LightGlue("disk").to("cuda").eval()

    def detect_keypoints(self, images, num_features=2048):
        """ Pretty self explanitory! Alas, we can only use disk w/ lightglue. ORB is brittle """
        _, _, h, w = images.shape
        wh = torch.tensor([w, h]).view(1, 2).float().cuda()
        features = self.detector(images, num_features, pad_if_not_divisible=True, window_size=15, score_threshold=40.0)
        return [{
            "keypoints": f.keypoints[None],
            "descriptors": f.descriptors[None],
            "image_size": wh
        } for f in features]


    def __call__(self, img, n):
        img_np = K.tensor_to_image(img)
        self.retrieval(img_np, n)
        self.imcache(img_np, n)

    def keyframe(self, k):
        self.retrieval.keyframe(k)
        self.imcache.keyframe(k)

    def estimate_3d_keypoints(self, i):
        """ Detect, match and triangulate 3D points """

        """ Load the triplet of frames """
        image_orig = self.imcache.load_frames([i-1,i,i+1], self.pg.intrinsics.device)
        image = image_orig.float() / 255
        fl = self.detect_keypoints(image)

        """ Form keypoint trajectories """
        trajectories = torch.full((2048, 3), -1, device='cuda', dtype=torch.long)
        trajectories[:,1] = torch.arange(2048)

        out = self.matcher({"image0": fl[0], "image1": fl[1]})
        i0, i1 = out["matches"][0].mT
        trajectories[i1, 0] = i0

        out = self.matcher({"image0": fl[2], "image1": fl[1]})
        i2, i1 = out["matches"][0].mT
        trajectories[i1, 2] = i2

        trajectories = trajectories[torch.randperm(2048)]
        trajectories = trajectories[trajectories.min(dim=1).values >= 0]

        a,b,c = trajectories.mT
        n, _ = trajectories.shape
        kps0 = fl[0]['keypoints'][:,a]
        kps1 = fl[1]['keypoints'][:,b]
        kps2 = fl[2]['keypoints'][:,c]

        desc1 = fl[1]['descriptors'][:,b]
        image_size = fl[1]["image_size"]

        kk = torch.arange(n).cuda().repeat(2)
        ii = torch.ones(2*n, device='cuda', dtype=torch.long)
        jj = torch.zeros(2*n, device='cuda', dtype=torch.long)
        jj[n:] = 2


        """ Construct "mini" patch graph. """
        true_disp = self.pg.patches_[i,:,2,1,1].median()
        patches = torch.cat((kps1, torch.ones(1, n, 1).cuda() * true_disp), dim=-1)
        patches = repeat(patches, '1 n uvd -> 1 n uvd 3 3', uvd=3)
        target = rearrange(torch.stack((kps0, kps2)), 'ot 1 n uv -> 1 (ot n) uv', uv=2, n=n, ot=2)
        weight = torch.ones_like(target)

        poses = self.pg.poses[:,i-1:i+2].clone()
        intrinsics = self.pg.intrinsics[:,i-1:i+2].clone() * 4

        coords = pops.transform(SE3(poses), patches, intrinsics, ii, jj, kk)
        coords = coords[:,:,1,1]
        residual = (coords - target).norm(dim=-1).squeeze(0)

        """ structure-only bundle adjustment """
        lmbda = torch.as_tensor([1e-3], device="cuda")
        fastba.BA(poses, patches, intrinsics,
            target, weight, lmbda, ii, jj, kk, 3, 3, M=-1, iterations=6, eff_impl=False)

        """ Only keep points with small residuals """
        coords = pops.transform(SE3(poses), patches, intrinsics, ii, jj, kk)
        coords = coords[:,:,1,1]
        residual = (coords - target).norm(dim=-1).squeeze(0)
        assert residual.numel() == 2*n
        mask = scatter_max(residual, kk)[0] < 2

        """ Un-project keypoints """
        points = pops.iproj(patches, intrinsics[:,torch.ones(n, device='cuda', dtype=torch.long)])
        points = (points[...,1,1,:3] / points[...,1,1,3:])

        return points[:,mask].squeeze(0), {"keypoints": kps1[:,mask], "descriptors": desc1[:,mask], "image_size": image_size}

    def attempt_loop_closure(self, n):
        if self.lc_in_progress:
            return

        """ Check if a loop was detected """
        cands = self.retrieval.detect_loop(thresh=self.cfg.LOOP_RETR_THRESH, num_repeat=self.cfg.LOOP_CLOSE_WINDOW_SIZE)
        if cands is not None:
            i, j = cands

            """ A loop was detected. Try to close it """
            lc_result = self.close_loop(i, j, n)
            self.lc_count += int(lc_result)

            """ Avoid multiple back-to-back detections """
            if lc_result:
                self.retrieval.confirm_loop(i, j)
            self.retrieval.found.clear()

        """ "Flush" the queue of frames into the loop-closure pipeline """
        self.retrieval.save_up_to(n - self.cfg.REMOVAL_WINDOW - 2)
        self.imcache.save_up_to(n - self.cfg.REMOVAL_WINDOW - 1)

    def terminate(self, n):
        self.retrieval.save_up_to(n-1)
        self.imcache.save_up_to(n-1)
        self.attempt_loop_closure(n)
        if self.lc_in_progress:
            self.lc_callback(skip_if_empty=False)
        self.lc_process.get()
        self.imcache.close()
        self.lc_pool.close()
        self.retrieval.close()
        print(f"LC COUNT: {self.lc_count}")


    def _rescale_deltas(self, s):
        """ Rescale the poses of removed frames by their predicted scales """

        tstamp_2_rescale = {}
        for i in range(self.pg.n):
            tstamp_2_rescale[self.pg.tstamps_[i]] = s[i]

        for t, (t0, dP) in self.pg.delta.items():
            t_src = t
            while t_src in self.pg.delta:
                t_src, _ = self.pg.delta[t_src]
            s1 = tstamp_2_rescale[t_src]
            self.pg.delta[t] = (t0, dP.scale(s1))

    def lc_callback(self, skip_if_empty=True):
        """ Check if the PGO finished running """
        if skip_if_empty and self.result_queue.empty():
            return
        self.lc_in_progress = False
        final_est = self.result_queue.get()
        safe_i, _ = final_est.shape
        res, s = final_est.tensor().cuda().split([7,1], dim=1)
        s1 = torch.ones(self.pg.n, device=s.device)
        s1[:safe_i] = s.squeeze()

        self.pg.poses_[:safe_i] = SE3(res).inv().data
        self.pg.patches_[:safe_i,:,2] /= s.view(safe_i, 1, 1, 1)
        self._rescale_deltas(s1)
        self.pg.normalize()

    def close_loop(self, i, j, n):
        """ This function tries to actually execute the loop closure """
        MIN_NUM_INLIERS = 30 # Minimum number of inlier matches
        # print("Found a match!", i, j)

        """ Estimate 3d keypoints w/ features"""
        i_pts, i_feat = self.estimate_3d_keypoints(i)
        j_pts, j_feat = self.estimate_3d_keypoints(j)
        _, _, iz = i_pts.mT
        _, _, jz = j_pts.mT
        th = 20 # a depth threshold. Far-away points aren't helpful
        i_pts = i_pts[iz < th]
        j_pts = j_pts[jz < th]
        for key in ['keypoints', 'descriptors']:
            i_feat[key] = i_feat[key][:,iz < th]
            j_feat[key] = j_feat[key][:,jz < th]

        # Early exit
        if i_pts.numel() < MIN_NUM_INLIERS:
            # print(f"Too few inliers (A): {i_pts.numel()=}")
            return False

        """ Match between the two point clouds """
        out = self.matcher({"image0": i_feat, "image1": j_feat})
        i_ind, j_ind = out["matches"][0].mT
        i_pts = i_pts[i_ind]
        j_pts = j_pts[j_ind]
        assert i_pts.shape == j_pts.shape, (i_pts.shape, j_pts.shape)
        i_pts, j_pts = asnumpy(i_pts.double()), asnumpy(j_pts.double())

        # Early exit
        if i_pts.size < MIN_NUM_INLIERS:
            # print(f"Too few inliers (B): {i_pts.size=}")
            return False

        """ Estimate Sim(3) transformation """
        r, t, s, num_inliers = ransac_umeyama(i_pts, j_pts, iterations=400, threshold=0.1) # threshold shouldn't be too low

        # Exist if number of inlier matches is too small
        if num_inliers < MIN_NUM_INLIERS:
            # print(f"Too few inliers (C): {num_inliers=}")
            return False

        """ Run Pose-Graph Optimization (PGO) """
        far_rel_pose = make_pypose_Sim3(r, t, s)[None]
        Gi = pp.SE3(self.pg.poses[:,self.loop_ii])
        Gj = pp.SE3(self.pg.poses[:,self.loop_jj])
        Gij = Gj * Gi.Inv()
        prev_sim3 = SE3_to_Sim3(Gij).data[0].cpu()
        loop_poses = pp.Sim3(torch.cat((prev_sim3, far_rel_pose)))
        loop_ii = torch.cat((self.loop_ii, torch.tensor([i])))
        loop_jj = torch.cat((self.loop_jj, torch.tensor([j])))

        pred_poses = pp.SE3(self.pg.poses_[:n]).Inv().cpu()

        self.loop_ii = loop_ii
        self.loop_jj = loop_jj

        torch.set_num_threads(1)

        self.lc_in_progress = True
        self.lc_process = self.lc_pool.apply_async(run_DPVO_PGO, (pred_poses.data, loop_poses.data, loop_ii, loop_jj, self.result_queue))
        return True