File size: 7,206 Bytes
f561f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import os.path as osp
from collections import defaultdict
from time import time

import torch
import joblib
import numpy as np
from loguru import logger
from smplx import SMPL, SMPLX
from progress.bar import Bar

from configs import constants as _C
from configs.config import parse_args
from lib.data.dataloader import setup_eval_dataloader
from lib.models import build_network, build_body_model
from lib.eval.eval_utils import (
    compute_error_accel,
    batch_align_by_pelvis,
    batch_compute_similarity_transform_torch,
)
from lib.utils import transforms
from lib.utils.utils import prepare_output_dir
from lib.utils.utils import prepare_batch
from lib.utils.imutils import avg_preds

m2mm = 1e3
smplx2smpl = torch.from_numpy(joblib.load(_C.BMODEL.SMPLX2SMPL)['matrix']).unsqueeze(0).float().cuda()
@torch.no_grad()
def main(cfg, args):
    torch.backends.cuda.matmul.allow_tf32 = False
    torch.backends.cudnn.allow_tf32 = False
    
    logger.info(f'GPU name -> {torch.cuda.get_device_name()}')
    logger.info(f'GPU feat -> {torch.cuda.get_device_properties("cuda")}')    
    
    # ========= Dataloaders ========= #
    eval_loader = setup_eval_dataloader(cfg, 'rich', 'test', cfg.MODEL.BACKBONE)
    logger.info(f'Dataset loaded')
    
    # ========= Load WHAM ========= #
    smpl_batch_size = cfg.TRAIN.BATCH_SIZE * cfg.DATASET.SEQLEN
    smpl = build_body_model(cfg.DEVICE, smpl_batch_size)
    network = build_network(cfg, smpl)
    network.eval()
    
    # Build neutral SMPL model for WHAM and gendered SMPLX models for the groundtruth data
    smpl = SMPL(_C.BMODEL.FLDR, gender='neutral').to(cfg.DEVICE)
    
    # Load vertices -> joints regression matrix to evaluate
    J_regressor_eval = smpl.J_regressor.clone().unsqueeze(0)
    pelvis_idxs = [1, 2]
    
    accumulator = defaultdict(list)
    bar = Bar('Inference', fill='#', max=len(eval_loader))
    with torch.no_grad():
        for i in range(len(eval_loader)):
            time_dict = {}
            _t = time()
            
            # Original batch
            batch = eval_loader.dataset.load_data(i, False)
            x, inits, features, kwargs, gt = prepare_batch(batch, cfg.DEVICE, cfg.TRAIN.STAGE=='stage2')
            
            # <======= Inference
            if cfg.FLIP_EVAL:
                flipped_batch = eval_loader.dataset.load_data(i, True)
                f_x, f_inits, f_features, f_kwargs, _ = prepare_batch(flipped_batch, cfg.DEVICE, cfg.TRAIN.STAGE=='stage2')
            
                # Forward pass with flipped input
                flipped_pred = network(f_x, f_inits, f_features, **f_kwargs)
                time_dict['inference_flipped'] = time() - _t; _t = time()
                
            # Forward pass with normal input
            pred = network(x, inits, features, **kwargs)
            time_dict['inference'] = time() - _t; _t = time()
            
            if cfg.FLIP_EVAL:
                # Merge two predictions
                flipped_pose, flipped_shape = flipped_pred['pose'].squeeze(0), flipped_pred['betas'].squeeze(0)
                pose, shape = pred['pose'].squeeze(0), pred['betas'].squeeze(0)
                flipped_pose, pose = flipped_pose.reshape(-1, 24, 6), pose.reshape(-1, 24, 6)
                avg_pose, avg_shape = avg_preds(pose, shape, flipped_pose, flipped_shape)
                avg_pose = avg_pose.reshape(-1, 144)
                
                # Refine trajectory with merged prediction
                network.pred_pose = avg_pose.view_as(network.pred_pose)
                network.pred_shape = avg_shape.view_as(network.pred_shape)
                pred = network.forward_smpl(**kwargs)
                time_dict['averaging'] = time() - _t; _t = time()
            # =======>
            
            # <======= Build predicted SMPL
            pred_output = smpl(body_pose=pred['poses_body'], 
                               global_orient=pred['poses_root_cam'], 
                               betas=pred['betas'].squeeze(0), 
                               pose2rot=False)
            pred_verts = pred_output.vertices.cpu()
            pred_j3d = torch.matmul(J_regressor_eval, pred_output.vertices).cpu()
            time_dict['building prediction'] = time() - _t; _t = time()
            # =======>
            
            # <======= Build groundtruth SMPL (from SMPLX)
            smplx = SMPLX(_C.BMODEL.FLDR.replace('smpl', 'smplx'), 
                          gender=batch['gender'], 
                          batch_size=len(pred_verts)
            ).to(cfg.DEVICE)
            gt_pose = transforms.matrix_to_axis_angle(transforms.rotation_6d_to_matrix(gt['pose'][0]))
            target_output = smplx(
                body_pose=gt_pose[:, 1:-2].reshape(-1, 63),
                global_orient=gt_pose[:, 0],
                betas=gt['betas'][0])
            target_verts = torch.matmul(smplx2smpl, target_output.vertices.cuda()).cpu()
            target_j3d = torch.matmul(J_regressor_eval, target_verts.to(cfg.DEVICE)).cpu()
            time_dict['building target'] = time() - _t; _t = time()
            # =======>
            
            # <======= Compute performance of the current sequence
            pred_j3d, target_j3d, pred_verts, target_verts = batch_align_by_pelvis(
                [pred_j3d, target_j3d, pred_verts, target_verts], pelvis_idxs
            )
            S1_hat = batch_compute_similarity_transform_torch(pred_j3d, target_j3d)
            pa_mpjpe = torch.sqrt(((S1_hat - target_j3d) ** 2).sum(dim=-1)).mean(dim=-1).numpy() * m2mm
            mpjpe = torch.sqrt(((pred_j3d - target_j3d) ** 2).sum(dim=-1)).mean(dim=-1).numpy() * m2mm
            pve = torch.sqrt(((pred_verts - target_verts) ** 2).sum(dim=-1)).mean(dim=-1).numpy() * m2mm
            accel = compute_error_accel(joints_pred=pred_j3d, joints_gt=target_j3d)[1:-1]
            accel = accel * (30 ** 2)       # per frame^s to per s^2
            time_dict['evaluating'] = time() - _t; _t = time()
            # =======>
            
            # summary_string = f'{batch["vid"]} | PA-MPJPE: {pa_mpjpe.mean():.1f}   MPJPE: {mpjpe.mean():.1f}   PVE: {pve.mean():.1f}'
            summary_string = f'{batch["vid"]} | ' + '   '.join([f'{k}: {v:.1f} s' for k, v in time_dict.items()])
            bar.suffix = summary_string
            bar.next()
            
            # <======= Accumulate the results over entire sequences
            accumulator['pa_mpjpe'].append(pa_mpjpe)
            accumulator['mpjpe'].append(mpjpe)
            accumulator['pve'].append(pve)
            accumulator['accel'].append(accel)
            
            # =======>
            
    for k, v in accumulator.items():
        accumulator[k] = np.concatenate(v).mean()

    print('')
    log_str = 'Evaluation on RICH, '
    log_str += ' '.join([f'{k.upper()}: {v:.4f},'for k,v in accumulator.items()])
    logger.info(log_str)
    
if __name__ == '__main__':
    cfg, cfg_file, args = parse_args(test=True)
    cfg = prepare_output_dir(cfg, cfg_file)
    
    main(cfg, args)