Spaces:
Sleeping
Sleeping
File size: 7,900 Bytes
20ae9ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import cuda_ba
import numba as nb
import numpy as np
import pypose as pp
import torch
from einops import parse_shape, rearrange
from scipy.spatial.transform import Rotation as R
def make_pypose_Sim3(rot, t, s):
q = R.from_matrix(rot).as_quat()
data = np.concatenate([t, q, np.array(s).reshape((1,))])
return pp.Sim3(data)
def SE3_to_Sim3(x: pp.SE3):
out = torch.cat((x.data, torch.ones_like(x.data[...,:1])), dim=-1)
return pp.Sim3(out)
@nb.njit(cache=True)
def _format(es):
return np.asarray(es, dtype=np.int64).reshape((-1, 2))[1:]
@nb.njit(cache=True)
def reduce_edges(flow_mag, ii, jj, max_num_edges, nms):
es = [(-1, -1)]
if ii.size == 0:
return _format(es)
Ni, Nj = (ii.max()+1), (jj.max()+1)
ignore_lookup = np.zeros((Ni, Nj), dtype=nb.bool_)
idxs = np.argsort(flow_mag)
for idx in idxs: # edge index
if len(es) > max_num_edges:
break
i = ii[idx]
j = jj[idx]
mag = flow_mag[idx]
if ((j - i) < 30):
continue
if mag >= 1000: # i.e., inf
continue
if ignore_lookup[i, j]:
continue
es.append((i, j))
for di in range(-nms, nms+1):
i1 = i + di
if 0 <= i1 < Ni:
ignore_lookup[i1, j] = True
return _format(es)
@nb.njit(cache=True)
def umeyama_alignment(x: np.ndarray, y: np.ndarray):
"""
The following function was copied from:
https://github.com/MichaelGrupp/evo/blob/3067541b350528fe46375423e5bc3a7c42c06c63/evo/core/geometry.py#L35
Computes the least squares solution parameters of an Sim(m) matrix
that minimizes the distance between a set of registered points.
Umeyama, Shinji: Least-squares estimation of transformation parameters
between two point patterns. IEEE PAMI, 1991
:param x: mxn matrix of points, m = dimension, n = nr. of data points
:param y: mxn matrix of points, m = dimension, n = nr. of data points
:param with_scale: set to True to align also the scale (default: 1.0 scale)
:return: r, t, c - rotation matrix, translation vector and scale factor
"""
# m = dimension, n = nr. of data points
m, n = x.shape
# means, eq. 34 and 35
mean_x = x.sum(axis=1) / n
mean_y = y.sum(axis=1) / n
# variance, eq. 36
# "transpose" for column subtraction
sigma_x = 1.0 / n * (np.linalg.norm(x - mean_x[:, np.newaxis])**2)
# covariance matrix, eq. 38
outer_sum = np.zeros((m, m))
for i in range(n):
outer_sum += np.outer((y[:, i] - mean_y), (x[:, i] - mean_x))
cov_xy = np.multiply(1.0 / n, outer_sum)
# SVD (text betw. eq. 38 and 39)
u, d, v = np.linalg.svd(cov_xy)
if np.count_nonzero(d > np.finfo(d.dtype).eps) < m - 1:
return None, None, None # Degenerate covariance rank, Umeyama alignment is not possible
# S matrix, eq. 43
s = np.eye(m)
if np.linalg.det(u) * np.linalg.det(v) < 0.0:
# Ensure a RHS coordinate system (Kabsch algorithm).
s[m - 1, m - 1] = -1
# rotation, eq. 40
r = u.dot(s).dot(v)
# scale & translation, eq. 42 and 41
c = 1 / sigma_x * np.trace(np.diag(d).dot(s))
t = mean_y - np.multiply(c, r.dot(mean_x))
return r, t, c
@nb.njit(cache=True)
def ransac_umeyama(src_points, dst_points, iterations=1, threshold=0.1):
best_inliers = 0
best_R = None
best_t = None
best_s = None
for _ in range(iterations):
# Randomly select three points
indices = np.random.choice(src_points.shape[0], 3, replace=False)
src_sample = src_points[indices]
dst_sample = dst_points[indices]
# Estimate transformation
R, t, s = umeyama_alignment(src_sample.T, dst_sample.T)
if t is None:
continue
# Apply transformation
transformed = (src_points @ (R * s).T) + t
# Count inliers (not ideal because depends on scene scale)
distances = np.sum((transformed - dst_points)**2, axis=1)**0.5
inlier_mask = distances < threshold
inliers = np.sum(inlier_mask)
# Update best transformation
if inliers > best_inliers:
best_inliers = inliers
best_R, best_t, best_s = umeyama_alignment(src_points[inlier_mask].T, dst_points[inlier_mask].T)
if inliers > 100:
break
return best_R, best_t, best_s, best_inliers
def batch_jacobian(func, x):
def _func_sum(*x):
return func(*x).sum(dim=0)
_, b, c = torch.autograd.functional.jacobian(_func_sum, x, vectorize=True)
return rearrange(torch.stack((b,c)), 'N O B I -> N B O I', N=2)
def _residual(C, Gi, Gj):
assert parse_shape(C, 'N _') == parse_shape(Gi, 'N _') == parse_shape(Gj, 'N _')
out = C @ pp.Exp(Gi) @ pp.Exp(Gj).Inv()
return out.Log().tensor()
def residual(Ginv, input_poses, dSloop, ii, jj, jacobian=False):
# prep
device = Ginv.device
assert parse_shape(input_poses, '_ d') == dict(d=7)
pred_inv_poses = SE3_to_Sim3(input_poses).Inv()
# free variables
n, _ = pred_inv_poses.shape
kk = torch.arange(1, n, device=device)
ll = kk-1
# constants
Ti = pred_inv_poses[kk]
Tj = pred_inv_poses[ll]
dSij = Tj @ Ti.Inv()
constants = torch.cat((dSij, dSloop), dim=0)
iii = torch.cat((kk, ii))
jjj = torch.cat((ll, jj))
resid = _residual(constants, Ginv[iii], Ginv[jjj])
if not jacobian:
return resid
J_Ginv_i, J_Ginv_j = batch_jacobian(_residual, (constants, Ginv[iii], Ginv[jjj]))
return resid, (J_Ginv_i, J_Ginv_j, iii, jjj)
# print(f"{J_Ginv_i.shape=} {J_Ginv_j.shape=} {resid.shape=} {iii.shape=} {jjj.shape=}")
r = iii.numel()
assert parse_shape(J_Ginv_i, 'r do di') == parse_shape(J_Ginv_j, 'r do di') == dict(r=r, do=7, di=7)
J = torch.zeros(r, n, 7, 7, device=device)
rr = torch.arange(r, device=device)
J[rr, iii] = J_Ginv_i
J[rr, jjj] = J_Ginv_j
J = rearrange(J, 'r n do di -> r do n di')
return resid, J, (J_Ginv_i, J_Ginv_j, iii, jjj)
def run_DPVO_PGO(pred_poses, loop_poses, loop_ii, loop_jj, queue):
final_est = perform_updates(pred_poses, loop_poses, loop_ii, loop_jj, iters=30)
safe_i = loop_ii.max().item() + 1
aa = SE3_to_Sim3(pred_poses.cpu())
final_est = (aa[[safe_i]] * final_est[[safe_i]].Inv()) * final_est
output = final_est[:safe_i]
queue.put(output)
def perform_updates(input_poses, dSloop, ii_loop, jj_loop, iters, ep=0.0, lmbda=1e-6, fix_opt_window=False):
""" Run the Levenberg Marquardt algorithm """
input_poses = input_poses.clone()
if fix_opt_window:
freen = torch.cat((ii_loop, jj_loop)).max().item() + 1
else:
freen = -1
Ginv = SE3_to_Sim3(input_poses).Inv().Log()
residual_history = []
for itr in range(iters):
resid, (J_Ginv_i, J_Ginv_j, iii, jjj) = residual(Ginv, input_poses, dSloop, ii_loop, jj_loop, jacobian=True)
residual_history.append(resid.square().mean().item())
# print("#Residual", residual_history[-1])
delta_pose, = cuda_ba.solve_system(J_Ginv_i, J_Ginv_j, iii, jjj, resid, ep, lmbda, freen)
assert Ginv.shape == delta_pose.shape
Ginv_tmp = Ginv + delta_pose
new_resid = residual(Ginv_tmp, input_poses, dSloop, ii_loop, jj_loop)
if new_resid.square().mean() < residual_history[-1]:
Ginv = Ginv_tmp
lmbda /= 2
else:
lmbda *= 2
if (residual_history[-1] < 1e-5) and (itr >= 4) and ((residual_history[-5] / residual_history[-1]) < 1.5):
break
return pp.Exp(Ginv).Inv()
|