Spaces:
Sleeping
Sleeping
File size: 6,699 Bytes
f561f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os.path as osp
from glob import glob
from collections import defaultdict
import cv2
import torch
import pickle
import joblib
import argparse
import numpy as np
from loguru import logger
from progress.bar import Bar
from configs import constants as _C
from lib.models.smpl import SMPL
from lib.models.preproc.extractor import FeatureExtractor
from lib.models.preproc.backbone.utils import process_image
dataset = defaultdict(list)
detection_results_dir = 'dataset/detection_results/3DPW'
tcmr_annot_pth = 'dataset/parsed_data/TCMR_preproc/3dpw_train_db.pt'
@torch.no_grad()
def preprocess(batch_size):
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
save_pth = osp.join(_C.PATHS.PARSED_DATA, f'3pdw_train_vit.pth') # Use ViT feature extractor
extractor = FeatureExtractor(device, flip_eval=True, max_batch_size=batch_size)
tcmr_data = joblib.load(tcmr_annot_pth)
annot_file_list, idxs = np.unique(tcmr_data['vid_name'], return_index=True)
idxs = idxs.tolist()
annot_file_list = [annot_file_list[idxs.index(idx)] for idx in sorted(idxs)]
annot_file_list = [osp.join(_C.PATHS.THREEDPW_PTH, 'sequenceFiles', 'train', annot_file[:-2] + '.pkl') for annot_file in annot_file_list]
annot_file_list = list(dict.fromkeys(annot_file_list))
vid_idx = 0
for annot_file in annot_file_list:
seq = annot_file.split('/')[-1].split('.')[0]
data = pickle.load(open(annot_file, 'rb'), encoding='latin1')
num_people = len(data['poses'])
num_frames = len(data['img_frame_ids'])
assert (data['poses2d'][0].shape[0] == num_frames)
K = torch.from_numpy(data['cam_intrinsics']).unsqueeze(0).float()
for p_id in range(num_people):
logger.info(f'==> {seq} {p_id}')
gender = {'m': 'male', 'f': 'female'}[data['genders'][p_id]]
smpl_gender = SMPL(model_path=_C.BMODEL.FLDR, gender=gender)
# ======== Add TCMR data ======== #
vid_name = f'{seq}_{p_id}'
tcmr_ids = [i for i, v in enumerate(tcmr_data['vid_name']) if vid_name in v]
frame_ids = tcmr_data['frame_id'][tcmr_ids]
pose = torch.from_numpy(data['poses'][p_id]).float()[frame_ids]
shape = torch.from_numpy(data['betas'][p_id][:10]).float().repeat(pose.size(0), 1)
trans = torch.from_numpy(data['trans'][p_id]).float()[frame_ids]
cam_poses = torch.from_numpy(data['cam_poses'][frame_ids]).float()
# ======== Align the mesh params ======== #
Rc = cam_poses[:, :3, :3]
Tc = cam_poses[:, :3, 3]
org_output = smpl_gender.get_output(betas=shape, body_pose=pose[:,3:], global_orient=pose[:,:3], transl=trans)
org_v0 = (org_output.vertices + org_output.offset.unsqueeze(1)).mean(1)
pose = torch.from_numpy(tcmr_data['pose'][tcmr_ids]).float()
output = smpl_gender.get_output(betas=shape, body_pose=pose[:,3:], global_orient=pose[:,:3])
v0 = (output.vertices + output.offset.unsqueeze(1)).mean(1)
trans = (Rc @ org_v0.reshape(-1, 3, 1)).reshape(-1, 3) + Tc - v0
j3d = output.joints + (output.offset + trans).unsqueeze(1)
j2d = torch.div(j3d, j3d[..., 2:])
kp2d = torch.matmul(K, j2d.transpose(-1, -2)).transpose(-1, -2)[..., :2]
# ======== Align the mesh params ======== #
# ======== Get detection results ======== #
fname = f'{seq}_{p_id}.npy'
pred_kp2d = torch.from_numpy(
np.load(osp.join(detection_results_dir, fname))
).float()[frame_ids]
# ======== Get detection results ======== #
img_paths = sorted(glob(osp.join(_C.PATHS.THREEDPW_PTH, 'imageFiles', seq, '*.jpg')))
img_paths = [img_path for i, img_path in enumerate(img_paths) if i in frame_ids]
img = cv2.imread(img_paths[0]); res_h, res_w = img.shape[:2]
vid_idxs = torch.from_numpy(np.array([vid_idx] * len(img_paths)).astype(int))
vid_idx += 1
# ======== Append data ======== #
dataset['bbox'].append(torch.from_numpy(tcmr_data['bbox'][tcmr_ids].copy()).float())
dataset['res'].append(torch.tensor([[res_w, res_h]]).repeat(len(frame_ids), 1).float())
dataset['vid'].append(vid_idxs)
dataset['pose'].append(pose)
dataset['betas'].append(shape)
dataset['transl'].append(trans)
dataset['kp2d'].append(pred_kp2d)
dataset['joints3D'].append(j3d)
dataset['joints2D'].append(kp2d)
dataset['frame_id'].append(torch.from_numpy(frame_ids))
dataset['cam_poses'].append(cam_poses)
dataset['gender'].append(torch.tensor([['male','female'].index(gender)]).repeat(len(frame_ids)))
# ======== Append data ======== #
# ======== Extract features ======== #
patch_list = []
bboxes = dataset['bbox'][-1].clone().numpy()
bar = Bar(f'Load images', fill='#', max=len(img_paths))
for img_path, bbox in zip(img_paths, bboxes):
img_rgb = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
norm_img, crop_img = process_image(img_rgb, bbox[:2], bbox[2] / 200, 256, 256)
patch_list.append(torch.from_numpy(norm_img).unsqueeze(0).float())
bar.next()
patch_list = torch.split(torch.cat(patch_list), batch_size)
features = []
for i, patch in enumerate(patch_list):
pred = extractor.model(patch.cuda(), encode=True)
features.append(pred.cpu())
features = torch.cat(features)
dataset['features'].append(features)
# ======== Extract features ======== #
for key in dataset.keys():
dataset[key] = torch.cat(dataset[key])
joblib.dump(dataset, save_pth)
logger.info(f'\n ==> Done !')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-b', '--batch_size', type=int, default=128, help='Data split')
args = parser.parse_args()
preprocess(args.batch_size) |