Spaces:
Runtime error
Runtime error
Delete run_utterance_cloner.py
Browse files- run_utterance_cloner.py +0 -121
run_utterance_cloner.py
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import soundfile as sf
|
4 |
-
import torch
|
5 |
-
from torch.optim import SGD
|
6 |
-
from tqdm import tqdm
|
7 |
-
|
8 |
-
from InferenceInterfaces.Meta_FastSpeech2 import Meta_FastSpeech2
|
9 |
-
from Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend
|
10 |
-
from Preprocessing.AudioPreprocessor import AudioPreprocessor
|
11 |
-
from TrainingInterfaces.Text_to_Spectrogram.AutoAligner.Aligner import Aligner
|
12 |
-
from TrainingInterfaces.Text_to_Spectrogram.FastSpeech2.DurationCalculator import DurationCalculator
|
13 |
-
from TrainingInterfaces.Text_to_Spectrogram.FastSpeech2.EnergyCalculator import EnergyCalculator
|
14 |
-
from TrainingInterfaces.Text_to_Spectrogram.FastSpeech2.PitchCalculator import Dio
|
15 |
-
|
16 |
-
|
17 |
-
class UtteranceCloner:
|
18 |
-
|
19 |
-
def __init__(self, device):
|
20 |
-
self.tts = Meta_FastSpeech2(device=device)
|
21 |
-
self.device = device
|
22 |
-
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True # torch 1.9 has a bug in the hub loading, this is a workaround
|
23 |
-
# careful: assumes 16kHz or 8kHz audio
|
24 |
-
self.silero_model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
|
25 |
-
model='silero_vad',
|
26 |
-
force_reload=False,
|
27 |
-
onnx=False,
|
28 |
-
verbose=False)
|
29 |
-
(self.get_speech_timestamps, _, _, _, _) = utils
|
30 |
-
torch.set_grad_enabled(True) # finding this issue was very infuriating: silero sets
|
31 |
-
# this to false globally during model loading rather than using inference mode or no_grad
|
32 |
-
self.silero_model = self.silero_model.to(self.device)
|
33 |
-
|
34 |
-
def extract_prosody(self, transcript, ref_audio_path, lang="de", on_line_fine_tune=False):
|
35 |
-
acoustic_model = Aligner()
|
36 |
-
acoustic_checkpoint_path = os.path.join("Models", "Aligner", "aligner.pt")
|
37 |
-
acoustic_model.load_state_dict(torch.load(acoustic_checkpoint_path, map_location='cpu')["asr_model"])
|
38 |
-
acoustic_model = acoustic_model.to(self.device)
|
39 |
-
dio = Dio(reduction_factor=1, fs=16000)
|
40 |
-
energy_calc = EnergyCalculator(reduction_factor=1, fs=16000)
|
41 |
-
dc = DurationCalculator(reduction_factor=1)
|
42 |
-
wave, sr = sf.read(ref_audio_path)
|
43 |
-
tf = ArticulatoryCombinedTextFrontend(language=lang, use_word_boundaries=False)
|
44 |
-
ap = AudioPreprocessor(input_sr=sr, output_sr=16000, melspec_buckets=80, hop_length=256, n_fft=1024, cut_silence=False)
|
45 |
-
try:
|
46 |
-
norm_wave = ap.audio_to_wave_tensor(normalize=True, audio=wave)
|
47 |
-
except ValueError:
|
48 |
-
print('Something went wrong, the reference wave might be too short.')
|
49 |
-
raise RuntimeError
|
50 |
-
|
51 |
-
with torch.inference_mode():
|
52 |
-
speech_timestamps = self.get_speech_timestamps(norm_wave, self.silero_model, sampling_rate=16000)
|
53 |
-
norm_wave = norm_wave[speech_timestamps[0]['start']:speech_timestamps[-1]['end']]
|
54 |
-
|
55 |
-
norm_wave_length = torch.LongTensor([len(norm_wave)])
|
56 |
-
text = tf.string_to_tensor(transcript, handle_missing=False).squeeze(0)
|
57 |
-
melspec = ap.audio_to_mel_spec_tensor(audio=norm_wave, normalize=False, explicit_sampling_rate=16000).transpose(0, 1)
|
58 |
-
melspec_length = torch.LongTensor([len(melspec)]).numpy()
|
59 |
-
|
60 |
-
if on_line_fine_tune:
|
61 |
-
# we fine-tune the aligner for a couple steps using SGD. This makes cloning pretty slow, but the results are greatly improved.
|
62 |
-
steps = 10
|
63 |
-
tokens = list() # we need an ID sequence for training rather than a sequence of phonological features
|
64 |
-
for vector in text:
|
65 |
-
for phone in tf.phone_to_vector:
|
66 |
-
if vector.numpy().tolist() == tf.phone_to_vector[phone]:
|
67 |
-
tokens.append(tf.phone_to_id[phone])
|
68 |
-
tokens = torch.LongTensor(tokens)
|
69 |
-
tokens = tokens.squeeze().to(self.device)
|
70 |
-
tokens_len = torch.LongTensor([len(tokens)]).to(self.device)
|
71 |
-
mel = melspec.unsqueeze(0).to(self.device)
|
72 |
-
mel.requires_grad = True
|
73 |
-
mel_len = torch.LongTensor([len(mel[0])]).to(self.device)
|
74 |
-
# actual fine-tuning starts here
|
75 |
-
optim_asr = SGD(acoustic_model.parameters(), lr=0.1)
|
76 |
-
acoustic_model.train()
|
77 |
-
for _ in tqdm(list(range(steps))):
|
78 |
-
pred = acoustic_model(mel)
|
79 |
-
loss = acoustic_model.ctc_loss(pred.transpose(0, 1).log_softmax(2), tokens, mel_len, tokens_len)
|
80 |
-
optim_asr.zero_grad()
|
81 |
-
loss.backward()
|
82 |
-
torch.nn.utils.clip_grad_norm_(acoustic_model.parameters(), 1.0)
|
83 |
-
optim_asr.step()
|
84 |
-
acoustic_model.eval()
|
85 |
-
torch.save({"asr_model": acoustic_model.state_dict()},
|
86 |
-
os.path.join(os.path.join("Models", "Aligner", "aligner.pt")))
|
87 |
-
|
88 |
-
alignment_path = acoustic_model.inference(mel=melspec.to(self.device),
|
89 |
-
tokens=text.to(self.device),
|
90 |
-
return_ctc=False)
|
91 |
-
|
92 |
-
duration = dc(torch.LongTensor(alignment_path), vis=None).cpu()
|
93 |
-
energy = energy_calc(input_waves=norm_wave.unsqueeze(0),
|
94 |
-
input_waves_lengths=norm_wave_length,
|
95 |
-
feats_lengths=melspec_length,
|
96 |
-
durations=duration.unsqueeze(0),
|
97 |
-
durations_lengths=torch.LongTensor([len(duration)]))[0].squeeze(0).cpu()
|
98 |
-
pitch = dio(input_waves=norm_wave.unsqueeze(0),
|
99 |
-
input_waves_lengths=norm_wave_length,
|
100 |
-
feats_lengths=melspec_length,
|
101 |
-
durations=duration.unsqueeze(0),
|
102 |
-
durations_lengths=torch.LongTensor([len(duration)]))[0].squeeze(0).cpu()
|
103 |
-
|
104 |
-
return duration, pitch, energy, speech_timestamps[0]['start'], speech_timestamps[-1]['end']
|
105 |
-
|
106 |
-
def clone_utterance(self,
|
107 |
-
path_to_reference_audio,
|
108 |
-
reference_transcription,
|
109 |
-
clone_speaker_identity=True,
|
110 |
-
lang="en"):
|
111 |
-
if clone_speaker_identity:
|
112 |
-
self.tts.set_utterance_embedding(path_to_reference_audio=path_to_reference_audio)
|
113 |
-
duration, pitch, energy, silence_frames_start, silence_frames_end = self.extract_prosody(reference_transcription,
|
114 |
-
path_to_reference_audio,
|
115 |
-
lang=lang)
|
116 |
-
self.tts.set_language(lang)
|
117 |
-
start_sil = torch.zeros([silence_frames_start]).to(self.device)
|
118 |
-
end_sil = torch.zeros([silence_frames_end]).to(self.device)
|
119 |
-
cloned_speech = self.tts(reference_transcription, view=False, durations=duration, pitch=pitch, energy=energy)
|
120 |
-
cloned_utt = torch.cat((start_sil, cloned_speech, end_sil), dim=0)
|
121 |
-
return cloned_utt.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|