import os
import pickle
import re
import gradio as gr
import matplotlib.pyplot as plt
import networkx as nx
from tqdm import tqdm
from Utility.utils import load_json_from_path
class Visualizer:
def __init__(self, cache_root="."):
tree_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_tree_dist.json")
self.tree_dist = load_json_from_path(tree_lookup_path)
map_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_map_dist.json")
self.map_dist = load_json_from_path(map_lookup_path)
largest_value_map_dist = 0.0
for _, values in self.map_dist.items():
for _, value in values.items():
largest_value_map_dist = max(largest_value_map_dist, value)
for key1 in self.map_dist:
for key2 in self.map_dist[key1]:
self.map_dist[key1][key2] = self.map_dist[key1][key2] / largest_value_map_dist
asp_dict_path = os.path.join(cache_root, "asp_dict.pkl")
with open(asp_dict_path, 'rb') as dictfile:
asp_sim = pickle.load(dictfile)
lang_list = list(asp_sim.keys())
self.asp_dist = dict()
seen_langs = set()
for lang_1 in lang_list:
if lang_1 not in seen_langs:
seen_langs.add(lang_1)
self.asp_dist[lang_1] = dict()
for index, lang_2 in enumerate(lang_list):
if lang_2 not in seen_langs: # it's symmetric
self.asp_dist[lang_1][lang_2] = 1 - asp_sim[lang_1][index]
self.iso_codes_to_names = load_json_from_path(os.path.join(cache_root, "iso_to_fullname.json"))
for code in self.iso_codes_to_names:
self.iso_codes_to_names[code] = re.sub("\(.*?\)", "", self.iso_codes_to_names[code])
def visualize(self, distance_type, neighbor, num_neighbors):
plt.clf()
plt.figure(figsize=(12, 12))
assert distance_type in ["Physical Distance between Language Centroids on the Globe",
"Distance to the Lowest Common Ancestor in the Language Family Tree",
"Angular Distance between the Frequencies of Phonemes"]
if distance_type == "Distance to the Lowest Common Ancestor in the Language Family Tree":
distance_measure = self.tree_dist
elif distance_type == "Angular Distance between the Frequencies of Phonemes":
distance_measure = self.asp_dist
elif distance_type == "Physical Distance between Language Centroids on the Globe":
distance_measure = self.map_dist
distances = list()
for lang_1 in distance_measure:
if lang_1 not in self.iso_codes_to_names:
continue
for lang_2 in distance_measure[lang_1]:
if lang_2 not in self.iso_codes_to_names:
continue
distances.append((self.iso_codes_to_names[lang_1], self.iso_codes_to_names[lang_2], distance_measure[lang_1][lang_2]))
G = nx.Graph()
min_dist = min(d for _, _, d in distances)
max_dist = max(d for _, _, d in distances)
normalized_distances = [(entity1, entity2, (d - min_dist) / (max_dist - min_dist)) for entity1, entity2, d in distances]
d_dist = list()
for entity1, entity2, d in tqdm(normalized_distances):
if neighbor == entity2 or neighbor == entity1:
if entity1 != entity2:
d_dist.append(d)
thresh = sorted(d_dist)[num_neighbors]
neighbors = set()
for entity1, entity2, d in tqdm(normalized_distances):
if d < thresh and (neighbor == entity2 or neighbor == entity1) and (entity1 != entity2):
neighbors.add(entity1)
neighbors.add(entity2)
spring_tension = (thresh - d) * 10 # for vis purposes
G.add_edge(entity1, entity2, weight=spring_tension)
neighbors.remove(neighbor)
for entity1, entity2, d in tqdm(normalized_distances):
if entity2 in neighbors and entity1 in neighbors:
if entity1 != entity2:
spring_tension = thresh - d
G.add_edge(entity1, entity2, weight=spring_tension)
pos = nx.spring_layout(G, weight="weight") # Positions for all nodes
edges = G.edges(data=True)
nx.draw_networkx_nodes(G, pos, node_size=1, alpha=0.01)
edges_connected_to_specific_node = [(u, v) for u, v in G.edges() if u == neighbor or v == neighbor]
nx.draw_networkx_edges(G, pos, edgelist=edges_connected_to_specific_node, edge_color='orange', alpha=0.4, width=3)
# edges_not_connected_to_specific_node = [(u, v) for u, v in G.edges() if u != neighbor and v != neighbor]
# nx.draw_networkx_edges(G, pos, edgelist=edges_not_connected_to_specific_node, edge_color='gray', alpha=0.1, width=1)
for u, v, d in edges:
if u == neighbor or v == neighbor:
nx.draw_networkx_edge_labels(G, pos, edge_labels={(u, v): round((thresh - (d['weight'] / 10)) * 10, 2)}, font_color="red", alpha=0.4) # reverse modifications
nx.draw_networkx_labels(G, pos, font_size=14, font_family='sans-serif', font_color='green')
nx.draw_networkx_labels(G, pos, labels={neighbor: neighbor}, font_size=14, font_family='sans-serif', font_color='red')
plt.title(f'Graph of {distance_type}')
plt.subplots_adjust(left=0, right=1, top=0.9, bottom=0)
plt.tight_layout()
return plt.gcf()
if __name__ == '__main__':
vis = Visualizer(cache_root=".")
text_selection = [f"{vis.iso_codes_to_names[iso_code]}" for iso_code in vis.iso_codes_to_names]
iface = gr.Interface(fn=vis.visualize,
inputs=[gr.Dropdown(["Physical Distance between Language Centroids on the Globe",
"Distance to the Lowest Common Ancestor in the Language Family Tree",
"Angular Distance between the Frequencies of Phonemes"],
type="value",
value='Physical Distance between Language Centroids on the Globe',
label="Select the Type of Distance"),
gr.Dropdown(text_selection,
type="value",
value="German",
label="Select the second Language (type on your keyboard to find it quickly)"),
gr.Slider(minimum=0, maximum=100, step=1,
value=12,
label="How many Nearest Neighbors should be displayed?")
],
outputs=[gr.Plot(label="", show_label=False, format="png", container=True)],
description="
This demo allows you to find the nearest neighbors of a language from the ISO 639-3 list according to several distance measurement functions. "
"For more information, check out our paper: https://arxiv.org/abs/2406.06403 and our text-to-speech tool, in which we make use of "
"this technique: https://github.com/DigitalPhonetics/IMS-Toucan
",
fill_width=True,
allow_flagging="never")
iface.launch()