File size: 6,537 Bytes
9e275b8
 
 
db5766e
9e275b8
 
70399da
9e275b8
 
 
 
db5766e
9e275b8
 
db5766e
 
 
9e275b8
 
db5766e
 
70399da
db5766e
 
9e275b8
 
 
 
 
 
 
70399da
9e275b8
 
 
70399da
9e275b8
 
 
 
 
 
 
 
 
70399da
 
9e275b8
 
 
70399da
9e275b8
 
 
70399da
9e275b8
70399da
 
 
 
 
 
 
 
 
 
 
 
9e275b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70399da
 
9e275b8
 
 
 
 
 
70399da
 
 
9e275b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os

import torch
from huggingface_hub import hf_hub_download

from InferenceInterfaces.ToucanTTSInterface import ToucanTTSInterface
from Modules.ControllabilityGAN.GAN import GanWrapper


class ControllableInterface:

    def __init__(self, gpu_id="cpu", available_artificial_voices=50, tts_model_path=None, vocoder_model_path=None, embedding_gan_path=None):
        if gpu_id == "cpu":
            os.environ["CUDA_VISIBLE_DEVICES"] = ""
        elif gpu_id == "cuda":
            pass
        else:  # in this case we hopefully got a number.
            os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
            os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu_id}"
        if embedding_gan_path is None:
            embedding_gan_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="embedding_gan.pt")
        self.device = "cuda" if gpu_id != "cpu" else "cpu"
        self.model = ToucanTTSInterface(device=self.device, tts_model_path=tts_model_path, vocoder_model_path=vocoder_model_path)
        self.wgan = GanWrapper(embedding_gan_path, num_cached_voices=available_artificial_voices, device=self.device)
        self.generated_speaker_embeds = list()
        self.available_artificial_voices = available_artificial_voices
        self.current_language = ""
        self.current_accent = ""

    def read(self,
             prompt,
             reference_audio,
             language,
             accent,
             voice_seed,
             prosody_creativity,
             duration_scaling_factor,
             pause_duration_scaling_factor,
             pitch_variance_scale,
             energy_variance_scale,
             emb_slider_1,
             emb_slider_2,
             emb_slider_3,
             emb_slider_4,
             emb_slider_5,
             emb_slider_6,
             loudness_in_db
             ):
        if self.current_language != language:
            self.model.set_phonemizer_language(language)
            print(f"switched phonemizer language to {language}")
            self.current_language = language
        if self.current_accent != accent:
            self.model.set_accent_language(accent)
            print(f"switched accent language to {accent}")
            self.current_accent = accent
        if reference_audio is None:
            self.wgan.set_latent(voice_seed)
            controllability_vector = torch.tensor([emb_slider_1,
                                                   emb_slider_2,
                                                   emb_slider_3,
                                                   emb_slider_4,
                                                   emb_slider_5,
                                                   emb_slider_6], dtype=torch.float32)
            embedding = self.wgan.modify_embed(controllability_vector)
            self.model.set_utterance_embedding(embedding=embedding)
        else:
            self.model.set_utterance_embedding(reference_audio)

        phones = self.model.text2phone.get_phone_string(prompt)
        if len(phones) > 1800:
            if language == "deu":
                prompt = "Deine Eingabe war zu lang. Bitte versuche es entweder mit einem kürzeren Text oder teile ihn in mehrere Teile auf."
            elif language == "ell":
                prompt = "Η εισήγησή σας ήταν πολύ μεγάλη. Παρακαλώ δοκιμάστε είτε ένα μικρότερο κείμενο είτε χωρίστε το σε διάφορα μέρη."
            elif language == "spa":
                prompt = "Su entrada es demasiado larga. Por favor, intente un texto más corto o divídalo en varias partes."
            elif language == "fin":
                prompt = "Vastauksesi oli liian pitkä. Kokeile joko lyhyempää tekstiä tai jaa se useampaan osaan."
            elif language == "rus":
                prompt = "Ваш текст слишком длинный. Пожалуйста, попробуйте либо сократить текст, либо разделить его на несколько частей."
            elif language == "hun":
                prompt = "Túl hosszú volt a bevitele. Kérjük, próbáljon meg rövidebb szöveget írni, vagy ossza több részre."
            elif language == "nld":
                prompt = "Uw input was te lang. Probeer een kortere tekst of splits het in verschillende delen."
            elif language == "fra":
                prompt = "Votre saisie était trop longue. Veuillez essayer un texte plus court ou le diviser en plusieurs parties."
            elif language == 'pol':
                prompt = "Twój wpis był zbyt długi. Spróbuj skrócić tekst lub podzielić go na kilka części."
            elif language == 'por':
                prompt = "O seu contributo foi demasiado longo. Por favor, tente um texto mais curto ou divida-o em várias partes."
            elif language == 'ita':
                prompt = "Il tuo input era troppo lungo. Per favore, prova un testo più corto o dividilo in più parti."
            elif language == 'cmn':
                prompt = "你的输入太长了。请尝试使用较短的文本或将其拆分为多个部分。"
            elif language == 'vie':
                prompt = "Đầu vào của bạn quá dài. Vui lòng thử một văn bản ngắn hơn hoặc chia nó thành nhiều phần."
            else:
                prompt = "Your input was too long. Please try either a shorter text or split it into several parts."
                if self.current_language != "eng":
                    self.model.set_phonemizer_language("eng")
                    self.current_language = "eng"
                if self.current_accent != "eng":
                    self.model.set_accent_language("eng")
                    self.current_accent = "eng"

        print(prompt + "\n\n")
        wav, sr, fig = self.model(prompt,
                                  input_is_phones=False,
                                  duration_scaling_factor=duration_scaling_factor,
                                  pitch_variance_scale=pitch_variance_scale,
                                  energy_variance_scale=energy_variance_scale,
                                  pause_duration_scaling_factor=pause_duration_scaling_factor,
                                  return_plot_as_filepath=True,
                                  prosody_creativity=prosody_creativity,
                                  loudness_in_db=loudness_in_db)
        return sr, wav, fig