File size: 19,851 Bytes
9e275b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import torch.multiprocessing
import wandb
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm

from Architectures.ToucanTTS.LanguageEmbeddingSpaceStructureLoss import LanguageEmbeddingSpaceStructureLoss
from Preprocessing.AudioPreprocessor import AudioPreprocessor
from Preprocessing.EnCodecAudioPreprocessor import CodecAudioPreprocessor
from Utility.WarmupScheduler import ToucanWarmupScheduler as WarmupScheduler
from Utility.path_to_transcript_dicts import *
from Utility.utils import delete_old_checkpoints
from Utility.utils import get_most_recent_checkpoint
from Utility.utils import plot_progress_spec_toucantts
from run_weight_averaging import average_checkpoints
from run_weight_averaging import get_n_recent_checkpoints_paths
from run_weight_averaging import load_net_toucan
from run_weight_averaging import save_model_for_use


def collate_and_pad(batch):
    # text, text_len, speech, speech_len, durations, energy, pitch, utterance condition, language_id
    return (pad_sequence([datapoint[0] for datapoint in batch], batch_first=True).float(),
            torch.stack([datapoint[1] for datapoint in batch]).squeeze(1),
            [datapoint[2] for datapoint in batch],
            torch.stack([datapoint[3] for datapoint in batch]).squeeze(1),
            pad_sequence([datapoint[4].squeeze() for datapoint in batch], batch_first=True),
            pad_sequence([datapoint[5].squeeze() for datapoint in batch], batch_first=True),
            pad_sequence([datapoint[6].squeeze() for datapoint in batch], batch_first=True),
            None,
            torch.stack([datapoint[8] for datapoint in batch]),
            torch.stack([datapoint[9] for datapoint in batch]))


def train_loop(net,
               datasets,
               device,
               save_directory,
               batch_size,
               steps,
               steps_per_checkpoint,
               lr,
               path_to_checkpoint,
               lang,
               resume,
               fine_tune,
               warmup_steps,
               use_wandb,
               train_samplers,
               gpu_count,
               use_less_loss,
               ):
    """
    see train loop arbiter for explanations of the arguments
    """
    net = net.to(device)
    if steps_per_checkpoint is None:
        steps_per_checkpoint = 1000
    if steps % steps_per_checkpoint == 0:
        steps = steps + 1
    else:
        steps = steps + ((steps_per_checkpoint + 1) - (steps % steps_per_checkpoint))  # making sure to stop at the closest point that makes sense to the specified stopping point
    if steps < warmup_steps * 5:
        print(f"too much warmup given the amount of steps, reducing warmup to {warmup_steps} steps")
        warmup_steps = steps // 5

    if use_less_loss:
        less_loss = LanguageEmbeddingSpaceStructureLoss()
        pretrained_language_codes = ['eng', 'deu', 'fra', 'spa', 'cmn', 'por', 'pol', 'ita', 'nld', 'ell', 'fin', 'vie', 'rus', 'hun', 'bem', 'swh', 'amh', 'wol', 'mal', 'chv', 'iba', 'jav', 'fon', 'hau', 'lbb', 'kik', 'lin', 'lug', 'luo', 'sxb', 'yor', 'nya', 'loz', 'toi', 'afr', 'arb', 'asm', 'ast', 'azj', 'bel', 'bul', 'ben', 'bos', 'cat', 'ceb', 'sdh',
                                     'ces', 'cym', 'dan', 'ekk', 'pes', 'fil', 'gle', 'glg', 'guj', 'heb', 'hin', 'hrv', 'hye', 'ind', 'ibo', 'isl', 'kat', 'kam', 'kea', 'kaz', 'khm', 'kan', 'kor', 'ltz', 'lao', 'lit', 'lvs', 'mri', 'mkd', 'xng', 'mar', 'zsm', 'mlt', 'oci', 'ory', 'pan', 'pst', 'ron', 'snd', 'slk', 'slv', 'sna', 'som', 'srp', 'swe', 'tam',
                                     'tel', 'tgk', 'tur', 'ukr', 'umb', 'urd', 'uzn', 'bhd', 'kfs', 'dgo', 'gbk', 'bgc', 'xnr', 'kfx', 'mjl', 'bfz', 'acf', 'bss', 'inb', 'nca', 'quh', 'wap', 'acr', 'bus', 'dgr', 'maz', 'nch', 'qul', 'tav', 'wmw', 'acu', 'byr', 'dik', 'iou', 'mbb', 'ncj', 'qvc', 'tbc', 'xed', 'agd', 'bzh', 'djk', 'ipi', 'mbc', 'ncl', 'qve',
                                     'tbg', 'xon', 'agg', 'bzj', 'dop', 'jac', 'mbh', 'ncu', 'qvh', 'tbl', 'xtd', 'agn', 'caa', 'jic', 'mbj', 'ndj', 'qvm', 'tbz', 'xtm', 'agr', 'cab', 'emp', 'jiv', 'mbt', 'nfa', 'qvn', 'tca', 'yaa', 'agu', 'cap', 'jvn', 'mca', 'ngp', 'qvs', 'tcs', 'yad', 'aia', 'car', 'ese', 'mcb', 'ngu', 'qvw', 'yal', 'cax', 'kaq', 'mcd',
                                     'nhe', 'qvz', 'tee', 'ycn', 'ake', 'cbc', 'far', 'mco', 'qwh', 'yka', 'alp', 'cbi', 'kdc', 'mcp', 'nhu', 'qxh', 'ame', 'cbr', 'gai', 'kde', 'mcq', 'nhw', 'qxn', 'tew', 'yre', 'amf', 'cbs', 'gam', 'kdl', 'mdy', 'nhy', 'qxo', 'tfr', 'yva', 'amk', 'cbt', 'geb', 'kek', 'med', 'nin', 'rai', 'zaa', 'apb', 'cbu', 'glk', 'ken',
                                     'mee', 'nko', 'rgu', 'zab', 'apr', 'cbv', 'meq', 'tgo', 'zac', 'arl', 'cco', 'gng', 'kje', 'met', 'nlg', 'rop', 'tgp', 'zad', 'grc', 'klv', 'mgh', 'nnq', 'rro', 'zai', 'ata', 'cek', 'gub', 'kmu', 'mib', 'noa', 'ruf', 'tna', 'zam', 'atb', 'cgc', 'guh', 'kne', 'mie', 'not', 'rug', 'tnk', 'zao', 'atg', 'chf', 'knf', 'mih',
                                     'npl', 'tnn', 'zar', 'awb', 'chz', 'gum', 'knj', 'mil', 'sab', 'tnp', 'zas', 'cjo', 'guo', 'ksr', 'mio', 'obo', 'seh', 'toc', 'zav', 'azg', 'cle', 'gux', 'kue', 'mit', 'omw', 'sey', 'tos', 'zaw', 'azz', 'cme', 'gvc', 'kvn', 'miz', 'ood', 'sgb', 'tpi', 'zca', 'bao', 'cni', 'gwi', 'kwd', 'mkl', 'shp', 'tpt', 'zga', 'bba',
                                     'cnl', 'gym', 'kwf', 'mkn', 'ote', 'sja', 'trc', 'ziw', 'bbb', 'cnt', 'gyr', 'kwi', 'mop', 'otq', 'snn', 'ttc', 'zlm', 'cof', 'hat', 'kyc', 'mox', 'pab', 'snp', 'tte', 'zos', 'bgt', 'con', 'kyf', 'mpm', 'pad', 'tue', 'zpc', 'bjr', 'cot', 'kyg', 'mpp', 'soy', 'tuf', 'zpl', 'bjv', 'cpa', 'kyq', 'mpx', 'pao', 'tuo', 'zpm',
                                     'bjz', 'cpb', 'hlt', 'kyz', 'mqb', 'pib', 'spp', 'zpo', 'bkd', 'cpu', 'hns', 'lac', 'mqj', 'pir', 'spy', 'txq', 'zpu', 'blz', 'crn', 'hto', 'lat', 'msy', 'pjt', 'sri', 'txu', 'zpz', 'bmr', 'cso', 'hub', 'lex', 'mto', 'pls', 'srm', 'udu', 'ztq', 'bmu', 'ctu', 'lgl', 'muy', 'poi', 'srn', 'zty', 'bnp', 'cuc', 'lid', 'mxb',
                                     'stp', 'upv', 'zyp', 'boa', 'cui', 'huu', 'mxq', 'sus', 'ura', 'boj', 'cuk', 'huv', 'llg', 'mxt', 'poy', 'suz', 'urb', 'box', 'cwe', 'hvn', 'prf', 'urt', 'bpr', 'cya', 'ign', 'lww', 'myk', 'ptu', 'usp', 'bps', 'daa', 'ikk', 'maj', 'myy', 'vid', 'bqc', 'dah', 'nab', 'qub', 'tac', 'bqp', 'ded', 'imo', 'maq', 'nas', 'quf',
                                     'taj', 'vmy']
        pretrained_language_ids = list()  # an alternative to the valid_language_ids
        for language_code in pretrained_language_codes:
            pretrained_language_ids.append(less_loss.iso_codes_to_ids[language_code])

        # there are 7233 language IDs, but there are a few illegal ones: "ajp", "ajt", "en-sc", "en-us", "fr-be", "fr-sw", "lak", "lno", "nul", "pii", "plj", "pt-br", "slq", "smd", "snb", "spa-lat", "tpw", "vi-ctr", "vi-so", "wya", "zua"
        valid_language_ids = list(less_loss.ids_to_iso_codes.keys())
        for illegal_lang in ["ajp", "ajt", "en-sc", "en-us", "fr-be", "fr-sw", "lak", "lno", "nul", "pii", "plj", "pt-br", "slq", "smd", "snb", "spa-lat", "tpw", "vi-ctr", "vi-so", "wya", "zua"]:
            remove_id = less_loss.iso_codes_to_ids[illegal_lang]
            valid_language_ids.remove(remove_id)

    if isinstance(net, torch.nn.parallel.DistributedDataParallel):
        model = net.module
    else:
        model = net

    torch.multiprocessing.set_sharing_strategy('file_system')
    train_loaders = list()
    train_iters = list()
    ap = CodecAudioPreprocessor(input_sr=-1, device=device)
    spec_extractor = AudioPreprocessor(input_sr=16000, output_sr=16000, device=device)

    for dataset, sampler in zip(datasets, train_samplers):
        batch_sampler_train = torch.utils.data.BatchSampler(sampler, 1, drop_last=True)
        train_loaders.append(DataLoader(dataset=dataset,
                                        batch_sampler=batch_sampler_train,
                                        num_workers=0,
                                        pin_memory=True,
                                        prefetch_factor=None,
                                        collate_fn=lambda x: x[0]))
        train_iters.append(iter(train_loaders[-1]))

    # embedding training is not supported here
    optimizer = torch.optim.Adam([p for name, p in model.named_parameters() if 'post_flow' not in name], lr=lr)
    flow_optimizer = torch.optim.Adam(model.post_flow.parameters(), lr=lr)

    scheduler = WarmupScheduler(optimizer, peak_lr=lr, warmup_steps=warmup_steps, max_steps=steps)
    flow_scheduler = WarmupScheduler(flow_optimizer, peak_lr=lr, warmup_steps=(warmup_steps // 4), max_steps=steps)

    steps_run_previously = 0
    regression_losses_total = list()
    glow_losses_total = list()
    duration_losses_total = list()
    pitch_losses_total = list()
    energy_losses_total = list()
    less_losses_total = list()

    if resume:
        path_to_checkpoint = get_most_recent_checkpoint(checkpoint_dir=save_directory)
    if path_to_checkpoint is not None:
        check_dict = torch.load(path_to_checkpoint, map_location=device)
        model.load_state_dict(check_dict["model"])
        if not fine_tune:
            optimizer.load_state_dict(check_dict["optimizer"])
            scheduler.load_state_dict(check_dict["scheduler"])
            flow_optimizer.load_state_dict(check_dict["flow_optimizer"])
            flow_scheduler.load_state_dict(check_dict["flow_scheduler"])
            steps_run_previously = check_dict["step_counter"]
        if steps_run_previously > steps:
            print("Desired steps already reached in loaded checkpoint.")
            return

    net.train()
    # =============================
    # Actual train loop starts here
    # =============================

    if not fine_tune and not resume and use_less_loss:
        print("Priming the language embedding space...")
        less_values = list()
        for i in tqdm(range(warmup_steps * 2)):
            language_ids = random.sample(valid_language_ids, batch_size)
            language_embeddings = model.encoder.language_embedding(torch.LongTensor(language_ids).to(device))
            less_value_unsupervised = less_loss(language_ids, language_embeddings)
            optimizer.zero_grad()
            less_values.append(less_value_unsupervised.item())
            less_value_unsupervised.backward()
            optimizer.step()
            if i % warmup_steps // 2 == 0:
                print(sum(less_values) / len(less_values))
                less_values = list()

    for step_counter in tqdm(range(steps_run_previously, steps)):
        run_glow = step_counter > (warmup_steps * 2)

        batches = []
        while len(batches) < batch_size:
            for index in random.sample(list(range(len(datasets))), len(datasets)):
                if len(batches) < batch_size:
                    # we get one batch for each task (i.e. language in this case) in a randomized order
                    try:
                        batch = next(train_iters[index])
                        batches.append(batch)
                    except StopIteration:
                        train_iters[index] = iter(train_loaders[index])
                        batch = next(train_iters[index])
                        batches.append(batch)
        batch = collate_and_pad(batches)

        text_tensors = batch[0].to(device)
        text_lengths = batch[1].squeeze().to(device)
        speech_indexes = batch[2]
        speech_lengths = batch[3].squeeze().to(device)
        gold_durations = batch[4].to(device)
        gold_pitch = batch[6].unsqueeze(-1).to(device)  # mind the switched order
        gold_energy = batch[5].unsqueeze(-1).to(device)  # mind the switched order
        lang_ids = batch[8].squeeze(1).to(device)

        speech_batch = list()  # I wish this could be done in the collate function or in the getitem, but using DL models in multiprocessing on very large datasets causes just way too many issues.
        for speech_sample in speech_indexes:
            with torch.inference_mode():
                wave = ap.indexes_to_audio(speech_sample.int().to(device)).detach()
                mel = spec_extractor.audio_to_mel_spec_tensor(wave, explicit_sampling_rate=16000).transpose(0, 1).detach().cpu()
            gold_speech_sample = mel.clone()
            speech_batch.append(gold_speech_sample)
        gold_speech = pad_sequence(speech_batch, batch_first=True).to(device)

        train_loss = 0.0
        # we sum the loss for each task, as we would do for the
        # second order regular MAML, but we do it only over one
        # step (i.e. iterations of inner loop = 1)

        utterance_embedding = batch[9].to(device)
        regression_loss, glow_loss, duration_loss, pitch_loss, energy_loss = net(
            text_tensors=text_tensors,
            text_lengths=text_lengths,
            gold_speech=gold_speech,
            speech_lengths=speech_lengths,
            gold_durations=gold_durations,
            gold_pitch=gold_pitch,
            gold_energy=gold_energy,
            utterance_embedding=utterance_embedding,
            lang_ids=lang_ids,
            return_feats=False,
            run_glow=run_glow
        )

        if use_less_loss:
            language_embeddings_seen = model.encoder.language_embedding(lang_ids)
            language_ids = random.sample(valid_language_ids, batch_size)
            language_embeddings_random = model.encoder.language_embedding(torch.LongTensor(language_ids).to(device))
            less_value = less_loss(lang_ids.cpu().squeeze().tolist() + language_ids, torch.cat([language_embeddings_seen, language_embeddings_random], dim=0))

        # then we directly update our meta-parameters without
        # the need for any task specific parameters

        if torch.isnan(regression_loss) or torch.isnan(duration_loss) or torch.isnan(pitch_loss) or torch.isnan(energy_loss):
            print("One of the losses turned to NaN! Skipping this batch ...")
            continue

        train_loss = train_loss + regression_loss
        train_loss = train_loss + duration_loss
        train_loss = train_loss + pitch_loss
        train_loss = train_loss + energy_loss
        if use_less_loss:
            train_loss = train_loss + less_value * 2

        if glow_loss is not None:  # even if run_glow is true, this can still happen if the log prob cannot be calculated.

            if torch.isnan(glow_loss) or torch.isinf(glow_loss):
                print("Glow loss turned to NaN! Skipping this batch ...")
                continue

            train_loss = train_loss + glow_loss

            if glow_loss < 0.0:
                glow_losses_total.append(glow_loss.item())
            else:
                glow_losses_total.append(0.1)  # just to avoid super large numbers during plotting that mess up the scaling
        else:
            glow_losses_total.append(0)

        regression_losses_total.append(regression_loss.item())
        duration_losses_total.append(duration_loss.item())
        pitch_losses_total.append(pitch_loss.item())
        energy_losses_total.append(energy_loss.item())
        if use_less_loss:
            less_losses_total.append(less_value.item())

        optimizer.zero_grad()
        flow_optimizer.zero_grad()
        if type(train_loss) is float:
            print("There is no loss for this step! Skipping ...")
            continue
        train_loss.backward()
        torch.nn.utils.clip_grad_norm_([p for name, p in model.named_parameters() if 'post_flow' not in name], 1.0, error_if_nonfinite=False)
        optimizer.step()
        scheduler.step()
        if glow_loss is not None:
            torch.nn.utils.clip_grad_norm_(model.post_flow.parameters(), 1.0, error_if_nonfinite=False)
            flow_optimizer.step()
            flow_scheduler.step()

        if step_counter % steps_per_checkpoint == 0 and step_counter != 0:
            # ==============================
            # Enough steps for some insights
            # ==============================
            if gpu_count > 1:
                rank = int(os.environ["LOCAL_RANK"])
            else:
                rank = 0
            if rank == 0:
                net.eval()
                default_embedding = datasets[0][0][9].to(device)
                print("Reconstruction Loss:    {}".format(round(sum(regression_losses_total) / len(regression_losses_total), 3)))
                print("Steps:                  {}\n".format(step_counter))
                torch.save({
                    "model"         : model.state_dict(),
                    "optimizer"     : optimizer.state_dict(),
                    "scheduler"     : scheduler.state_dict(),
                    "flow_optimizer": flow_optimizer.state_dict(),
                    "flow_scheduler": flow_scheduler.state_dict(),
                    "step_counter"  : step_counter,
                    "default_emb"   : default_embedding,
                    "config"        : model.config
                },
                    os.path.join(save_directory, "checkpoint_{}.pt".format(step_counter)))
                delete_old_checkpoints(save_directory, keep=5)

                if use_wandb:
                    wandb.log({
                        "regression_loss"         : round(sum(regression_losses_total) / len(regression_losses_total), 5),
                        "glow_loss"               : round(sum(glow_losses_total) / len(glow_losses_total), 5),
                        "duration_loss"           : round(sum(duration_losses_total) / len(duration_losses_total), 5),
                        "pitch_loss"              : round(sum(pitch_losses_total) / len(pitch_losses_total), 5),
                        "energy_loss"             : round(sum(energy_losses_total) / len(energy_losses_total), 5),
                        "embedding_structure_loss": 0.0 if len(less_losses_total) == 0 else round(sum(less_losses_total) / len(less_losses_total), 5),
                        "learning_rate"           : optimizer.param_groups[0]['lr']
                    }, step=step_counter)

                try:
                    path_to_most_recent_plot = plot_progress_spec_toucantts(model,
                                                                            device,
                                                                            save_dir=save_directory,
                                                                            step=step_counter,
                                                                            lang=lang,
                                                                            default_emb=default_embedding,
                                                                            run_glow=run_glow)
                    if use_wandb:
                        wandb.log({
                            "progress_plot": wandb.Image(path_to_most_recent_plot)
                        }, step=step_counter)

                except IndexError:
                    print("generating progress plots failed.")

                checkpoint_paths = get_n_recent_checkpoints_paths(checkpoint_dir=save_directory, n=1)
                averaged_model, default_embed = average_checkpoints(checkpoint_paths, load_func=load_net_toucan)
                save_model_for_use(model=averaged_model, default_embed=default_embed, name=os.path.join(save_directory, "best.pt"))

                net.train()

            regression_losses_total = list()
            glow_losses_total = list()
            duration_losses_total = list()
            pitch_losses_total = list()
            energy_losses_total = list()
            less_losses_total = list()