Spaces:
Running
on
T4
Running
on
T4
File size: 25,815 Bytes
9e275b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import torch
from torch.nn import Linear
from torch.nn import Sequential
from torch.nn import Tanh
from Architectures.GeneralLayers.Conformer import Conformer
from Architectures.GeneralLayers.LengthRegulator import LengthRegulator
from Architectures.ToucanTTS.Glow import Glow
from Architectures.ToucanTTS.StochasticToucanTTS.StochasticToucanTTSLoss import StochasticToucanTTSLoss
from Architectures.ToucanTTS.StochasticToucanTTS.StochasticVariancePredictor import StochasticVariancePredictor
from Preprocessing.articulatory_features import get_feature_to_index_lookup
from Utility.utils import initialize
from Utility.utils import make_non_pad_mask
from Utility.utils import make_pad_mask
class StochasticToucanTTS(torch.nn.Module):
"""
StochasticToucanTTS module, which is mostly just a FastSpeech 2 module,
but with lots of designs from different architectures accumulated
and some major components added to put a large focus on multilinguality.
Original contributions:
- Inputs are configurations of the articulatory tract
- Word boundaries are modeled explicitly in the encoder end removed before the decoder
- Speaker embedding conditioning is derived from GST and Adaspeech 4
- Responsiveness of variance predictors to utterance embedding is increased through conditional layer norm
- The final output receives a GAN discriminator feedback signal
- Stochastic Duration Prediction through a normalizing flow
- Stochastic Pitch Prediction through a normalizing flow
- Stochastic Energy prediction through a normalizing flow
Contributions inspired from elsewhere:
- The PostNet is also a normalizing flow, like in PortaSpeech
- Pitch and energy values are averaged per-phone, as in FastPitch to enable great controllability
- The encoder and decoder are Conformers
"""
def __init__(self,
# network structure related
input_feature_dimensions=62,
output_spectrogram_channels=80,
attention_dimension=192,
attention_heads=4,
positionwise_conv_kernel_size=1,
use_scaled_positional_encoding=True,
init_type="xavier_uniform",
use_macaron_style_in_conformer=True,
use_cnn_in_conformer=True,
# encoder
encoder_layers=6,
encoder_units=1536,
encoder_normalize_before=True,
encoder_concat_after=False,
conformer_encoder_kernel_size=7,
transformer_enc_dropout_rate=0.2,
transformer_enc_positional_dropout_rate=0.2,
transformer_enc_attn_dropout_rate=0.2,
# decoder
decoder_layers=6,
decoder_units=1536,
decoder_concat_after=False,
conformer_decoder_kernel_size=31,
decoder_normalize_before=True,
transformer_dec_dropout_rate=0.2,
transformer_dec_positional_dropout_rate=0.2,
transformer_dec_attn_dropout_rate=0.2,
# duration predictor
duration_predictor_layers=3,
duration_predictor_chans=256,
duration_predictor_kernel_size=3,
duration_predictor_dropout_rate=0.2,
# pitch predictor
pitch_embed_kernel_size=1,
pitch_embed_dropout=0.0,
# energy predictor
energy_embed_kernel_size=1,
energy_embed_dropout=0.0,
# additional features
utt_embed_dim=192,
lang_embs=8000):
super().__init__()
self.input_feature_dimensions = input_feature_dimensions
self.output_spectrogram_channels = output_spectrogram_channels
self.attention_dimension = attention_dimension
self.use_scaled_pos_enc = use_scaled_positional_encoding
self.multilingual_model = lang_embs is not None
self.multispeaker_model = utt_embed_dim is not None
articulatory_feature_embedding = Sequential(Linear(input_feature_dimensions, 100), Tanh(), Linear(100, attention_dimension))
self.encoder = Conformer(conformer_type="encoder",
attention_dim=attention_dimension,
attention_heads=attention_heads,
linear_units=encoder_units,
num_blocks=encoder_layers,
input_layer=articulatory_feature_embedding,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_encoder_kernel_size,
zero_triu=False,
utt_embed=utt_embed_dim,
lang_embs=lang_embs,
use_output_norm=True)
self.duration_flow = StochasticVariancePredictor(in_channels=attention_dimension,
kernel_size=3,
p_dropout=0.5,
n_flows=5,
conditioning_signal_channels=utt_embed_dim)
self.pitch_flow = StochasticVariancePredictor(in_channels=attention_dimension,
kernel_size=5,
p_dropout=0.5,
n_flows=6,
conditioning_signal_channels=utt_embed_dim)
self.energy_flow = StochasticVariancePredictor(in_channels=attention_dimension,
kernel_size=3,
p_dropout=0.5,
n_flows=3,
conditioning_signal_channels=utt_embed_dim)
self.pitch_embed = Sequential(torch.nn.Conv1d(in_channels=1,
out_channels=attention_dimension,
kernel_size=pitch_embed_kernel_size,
padding=(pitch_embed_kernel_size - 1) // 2),
torch.nn.Dropout(pitch_embed_dropout))
self.energy_embed = Sequential(torch.nn.Conv1d(in_channels=1, out_channels=attention_dimension, kernel_size=energy_embed_kernel_size,
padding=(energy_embed_kernel_size - 1) // 2),
torch.nn.Dropout(energy_embed_dropout))
self.length_regulator = LengthRegulator()
self.decoder = Conformer(conformer_type="decoder",
attention_dim=attention_dimension,
attention_heads=attention_heads,
linear_units=decoder_units,
num_blocks=decoder_layers,
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_decoder_kernel_size,
use_output_norm=False,
utt_embed=utt_embed_dim)
self.feat_out = Linear(attention_dimension, output_spectrogram_channels)
self.post_flow = Glow(
in_channels=output_spectrogram_channels,
hidden_channels=192, # post_glow_hidden
kernel_size=3, # post_glow_kernel_size
dilation_rate=1,
n_blocks=12, # post_glow_n_blocks (original 12 in paper)
n_layers=3, # post_glow_n_block_layers (original 3 in paper)
n_split=4,
n_sqz=2,
text_condition_channels=attention_dimension,
share_cond_layers=False, # post_share_cond_layers
share_wn_layers=4,
sigmoid_scale=False,
condition_integration_projection=torch.nn.Conv1d(output_spectrogram_channels + attention_dimension, attention_dimension, 5, padding=2)
)
# initialize parameters
self._reset_parameters(init_type=init_type)
if lang_embs is not None:
torch.nn.init.normal_(self.encoder.language_embedding.weight, mean=0, std=attention_dimension ** -0.5)
self.criterion = StochasticToucanTTSLoss()
def forward(self,
text_tensors,
text_lengths,
gold_speech,
speech_lengths,
gold_durations,
gold_pitch,
gold_energy,
utterance_embedding,
return_feats=False,
lang_ids=None,
run_glow=True
):
"""
Args:
return_feats (Boolean): whether to return the predicted spectrogram
text_tensors (LongTensor): Batch of padded text vectors (B, Tmax).
text_lengths (LongTensor): Batch of lengths of each input (B,).
gold_speech (Tensor): Batch of padded target features (B, Lmax, odim).
speech_lengths (LongTensor): Batch of the lengths of each target (B,).
gold_durations (LongTensor): Batch of padded durations (B, Tmax + 1).
gold_pitch (Tensor): Batch of padded token-averaged pitch (B, Tmax + 1, 1).
gold_energy (Tensor): Batch of padded token-averaged energy (B, Tmax + 1, 1).
run_glow (Boolean): Whether to run the PostNet. There should be a warmup phase in the beginning.
lang_ids (LongTensor): The language IDs used to access the language embedding table, if the model is multilingual
utterance_embedding (Tensor): Batch of embeddings to condition the TTS on, if the model is multispeaker
"""
before_outs, \
after_outs, \
duration_loss, \
pitch_loss, \
energy_loss, \
glow_loss = self._forward(text_tensors=text_tensors,
text_lengths=text_lengths,
gold_speech=gold_speech,
speech_lengths=speech_lengths,
gold_durations=gold_durations,
gold_pitch=gold_pitch,
gold_energy=gold_energy,
utterance_embedding=utterance_embedding,
is_inference=False,
lang_ids=lang_ids,
run_glow=run_glow)
# calculate loss
l1_loss = self.criterion(after_outs=after_outs,
before_outs=before_outs,
gold_spectrograms=gold_speech,
spectrogram_lengths=speech_lengths,
text_lengths=text_lengths)
if return_feats:
if after_outs is None:
after_outs = before_outs
return l1_loss, duration_loss, pitch_loss, energy_loss, glow_loss, after_outs
return l1_loss, duration_loss, pitch_loss, energy_loss, glow_loss
def _forward(self,
text_tensors,
text_lengths,
gold_speech=None,
speech_lengths=None,
gold_durations=None,
gold_pitch=None,
gold_energy=None,
is_inference=False,
utterance_embedding=None,
lang_ids=None,
run_glow=True):
if not self.multilingual_model:
lang_ids = None
if not self.multispeaker_model:
utterance_embedding = None
# encoding the texts
text_masks = make_non_pad_mask(text_lengths, device=text_lengths.device).unsqueeze(-2)
padding_masks = make_pad_mask(text_lengths, device=text_lengths.device)
encoded_texts, _ = self.encoder(text_tensors, text_masks, utterance_embedding=utterance_embedding, lang_ids=lang_ids)
if is_inference:
variance_mask = torch.ones(size=[text_tensors.size(1)], device=text_tensors.device)
# predicting pitch
pitch_predictions = self.pitch_flow(encoded_texts.transpose(1, 2), variance_mask, w=None, g=utterance_embedding.unsqueeze(-1), reverse=True).squeeze(-1).transpose(1, 2)
for phoneme_index, phoneme_vector in enumerate(text_tensors.squeeze(0)):
if phoneme_vector[get_feature_to_index_lookup()["voiced"]] == 0:
pitch_predictions[0][phoneme_index] = 0.0
embedded_pitch_curve = self.pitch_embed(pitch_predictions.transpose(1, 2)).transpose(1, 2)
encoded_texts = encoded_texts + embedded_pitch_curve
# predicting energy
energy_predictions = self.energy_flow(encoded_texts.transpose(1, 2), variance_mask, w=None, g=utterance_embedding.unsqueeze(-1), reverse=True).squeeze(-1).transpose(1, 2)
embedded_energy_curve = self.energy_embed(energy_predictions.transpose(1, 2)).transpose(1, 2)
encoded_texts = encoded_texts + embedded_energy_curve
# predicting durations
predicted_durations = self.duration_flow(encoded_texts.transpose(1, 2), variance_mask, w=None, g=utterance_embedding.unsqueeze(-1), reverse=True).squeeze(-1).transpose(1, 2).squeeze(-1)
predicted_durations = torch.ceil(torch.exp(predicted_durations)).long()
for phoneme_index, phoneme_vector in enumerate(text_tensors.squeeze(0)):
if phoneme_vector[get_feature_to_index_lookup()["word-boundary"]] == 1:
predicted_durations[0][phoneme_index] = 0
# predicting durations for text and upsampling accordingly
upsampled_enriched_encoded_texts = self.length_regulator(encoded_texts, predicted_durations)
else:
# learning to predict pitch
idx = gold_pitch != 0
pitch_mask = torch.logical_and(text_masks, idx.transpose(1, 2))
scaled_pitch_targets = gold_pitch.detach().clone()
scaled_pitch_targets[idx] = torch.exp(gold_pitch[idx]) # we scale up, so that the log in the flow can handle the value ranges better.
pitch_flow_loss = torch.sum(self.pitch_flow(encoded_texts.transpose(1, 2).detach(), pitch_mask, w=scaled_pitch_targets.transpose(1, 2), g=utterance_embedding.unsqueeze(-1), reverse=False))
pitch_flow_loss = torch.sum(pitch_flow_loss / torch.sum(pitch_mask)) # weighted masking
embedded_pitch_curve = self.pitch_embed(gold_pitch.transpose(1, 2)).transpose(1, 2)
encoded_texts = encoded_texts + embedded_pitch_curve
# learning to predict energy
idx = gold_energy != 0
energy_mask = torch.logical_and(text_masks, idx.transpose(1, 2))
scaled_energy_targets = gold_energy.detach().clone()
scaled_energy_targets[idx] = torch.exp(gold_energy[idx]) # we scale up, so that the log in the flow can handle the value ranges better.
energy_flow_loss = torch.sum(self.energy_flow(encoded_texts.transpose(1, 2).detach(), energy_mask, w=scaled_energy_targets.transpose(1, 2), g=utterance_embedding.unsqueeze(-1), reverse=False))
energy_flow_loss = torch.sum(energy_flow_loss / torch.sum(energy_mask)) # weighted masking
embedded_energy_curve = self.energy_embed(gold_energy.transpose(1, 2)).transpose(1, 2)
encoded_texts = encoded_texts + embedded_energy_curve
# learning to predict durations
idx = gold_durations.unsqueeze(-1) != 0
duration_mask = torch.logical_and(text_masks, idx.transpose(1, 2))
duration_targets = gold_durations.unsqueeze(-1).detach().clone().float()
duration_flow_loss = torch.sum(self.duration_flow(encoded_texts.transpose(1, 2).detach(), duration_mask, w=duration_targets.transpose(1, 2), g=utterance_embedding.unsqueeze(-1), reverse=False))
duration_flow_loss = torch.sum(duration_flow_loss / torch.sum(duration_mask)) # weighted masking
upsampled_enriched_encoded_texts = self.length_regulator(encoded_texts, gold_durations)
# decoding spectrogram
decoder_masks = make_non_pad_mask(speech_lengths, device=speech_lengths.device).unsqueeze(-2) if speech_lengths is not None and not is_inference else None
decoded_speech, _ = self.decoder(upsampled_enriched_encoded_texts, decoder_masks, utterance_embedding=utterance_embedding)
decoded_spectrogram = self.feat_out(decoded_speech).view(decoded_speech.size(0), -1, self.output_spectrogram_channels)
# refine spectrogram further with a normalizing flow (requires warmup, so it's not always on)
glow_loss = None
if run_glow:
if is_inference:
refined_spectrogram = self.post_flow(tgt_mels=None,
infer=is_inference,
mel_out=decoded_spectrogram,
encoded_texts=upsampled_enriched_encoded_texts,
tgt_nonpadding=None).squeeze()
else:
glow_loss = self.post_flow(tgt_mels=gold_speech,
infer=is_inference,
mel_out=decoded_spectrogram.detach().clone(),
encoded_texts=upsampled_enriched_encoded_texts.detach().clone(),
tgt_nonpadding=decoder_masks)
if is_inference:
return decoded_spectrogram.squeeze(), \
refined_spectrogram.squeeze(), \
predicted_durations.squeeze(), \
pitch_predictions.squeeze(), \
energy_predictions.squeeze()
else:
return decoded_spectrogram, \
None, \
duration_flow_loss, \
pitch_flow_loss, \
energy_flow_loss, \
glow_loss
@torch.inference_mode()
def inference(self,
text,
speech=None,
utterance_embedding=None,
return_duration_pitch_energy=False,
lang_id=None,
run_postflow=True):
"""
Args:
text (LongTensor): Input sequence of characters (T,).
speech (Tensor, optional): Feature sequence to extract style (N, idim).
return_duration_pitch_energy (Boolean): whether to return the list of predicted durations for nicer plotting
run_postflow (Boolean): Whether to run the PostNet. There should be a warmup phase in the beginning.
lang_id (LongTensor): The language ID used to access the language embedding table, if the model is multilingual
utterance_embedding (Tensor): Embedding to condition the TTS on, if the model is multispeaker
"""
self.eval()
x, y = text, speech
# setup batch axis
ilens = torch.tensor([x.shape[0]], dtype=torch.long, device=x.device)
xs, ys = x.unsqueeze(0), None
if y is not None:
ys = y.unsqueeze(0)
if lang_id is not None:
lang_id = lang_id.unsqueeze(0)
utterance_embeddings = utterance_embedding.unsqueeze(0) if utterance_embedding is not None else None
before_outs, \
after_outs, \
duration_predictions, \
pitch_predictions, \
energy_predictions = self._forward(xs,
ilens,
ys,
is_inference=True,
utterance_embedding=utterance_embeddings,
lang_ids=lang_id,
run_glow=run_postflow) # (1, L, odim)
self.train()
if after_outs is None:
after_outs = before_outs
if return_duration_pitch_energy:
return before_outs, after_outs, duration_predictions, pitch_predictions, energy_predictions
return after_outs
def _reset_parameters(self, init_type):
# initialize parameters
if init_type != "pytorch":
initialize(self, init_type)
if __name__ == '__main__':
print(sum(p.numel() for p in StochasticToucanTTS().parameters() if p.requires_grad))
print(" TESTING TRAINING ")
print(" batchsize 3 ")
dummy_text_batch = torch.randint(low=0, high=2, size=[3, 3, 62]).float() # [Batch, Sequence Length, Features per Phone]
dummy_text_lens = torch.LongTensor([2, 3, 3])
dummy_speech_batch = torch.randn([3, 30, 80]) # [Batch, Sequence Length, Spectrogram Buckets]
dummy_speech_lens = torch.LongTensor([10, 30, 20])
dummy_durations = torch.LongTensor([[10, 0, 0], [10, 15, 5], [5, 5, 10]])
dummy_pitch = torch.Tensor([[[1.0], [0.], [0.]], [[1.1], [1.2], [0.8]], [[1.1], [1.2], [0.8]]])
dummy_energy = torch.Tensor([[[1.0], [1.3], [0.]], [[1.1], [1.4], [0.8]], [[1.1], [1.2], [0.8]]])
dummy_utterance_embed = torch.randn([3, 192]) # [Batch, Dimensions of Speaker Embedding]
dummy_language_id = torch.LongTensor([5, 3, 2]).unsqueeze(1)
model = StochasticToucanTTS()
l1, dl, pl, el, gl = model(dummy_text_batch,
dummy_text_lens,
dummy_speech_batch,
dummy_speech_lens,
dummy_durations,
dummy_pitch,
dummy_energy,
utterance_embedding=dummy_utterance_embed,
lang_ids=dummy_language_id)
loss = l1 + gl + dl + pl + el
print(loss)
loss.backward()
# from Utility.utils import plot_grad_flow
# plot_grad_flow(model.encoder.named_parameters())
# plot_grad_flow(model.decoder.named_parameters())
# plot_grad_flow(model.pitch_predictor.named_parameters())
# plot_grad_flow(model.duration_predictor.named_parameters())
# plot_grad_flow(model.post_flow.named_parameters())
print(" batchsize 2 ")
dummy_text_batch = torch.randint(low=0, high=2, size=[2, 3, 62]).float() # [Batch, Sequence Length, Features per Phone]
dummy_text_lens = torch.LongTensor([2, 3])
dummy_speech_batch = torch.randn([2, 30, 80]) # [Batch, Sequence Length, Spectrogram Buckets]
dummy_speech_lens = torch.LongTensor([10, 30])
dummy_durations = torch.LongTensor([[10, 0, 0], [10, 15, 5]])
dummy_pitch = torch.Tensor([[[1.0], [0.], [0.]], [[1.1], [1.2], [0.8]]])
dummy_energy = torch.Tensor([[[1.0], [1.3], [0.]], [[1.1], [1.4], [0.8]]])
dummy_utterance_embed = torch.randn([2, 192]) # [Batch, Dimensions of Speaker Embedding]
dummy_language_id = torch.LongTensor([5, 3]).unsqueeze(1)
model = StochasticToucanTTS()
l1, dl, pl, el, gl = model(dummy_text_batch,
dummy_text_lens,
dummy_speech_batch,
dummy_speech_lens,
dummy_durations,
dummy_pitch,
dummy_energy,
utterance_embedding=dummy_utterance_embed,
lang_ids=dummy_language_id)
loss = l1 + gl + dl + el + pl
print(loss)
loss.backward()
print(" TESTING INFERENCE ")
dummy_text_batch = torch.randint(low=0, high=2, size=[12, 62]).float() # [Sequence Length, Features per Phone]
dummy_utterance_embed = torch.randn([192]) # [Dimensions of Speaker Embedding]
dummy_language_id = torch.LongTensor([2])
print(StochasticToucanTTS().inference(dummy_text_batch,
utterance_embedding=dummy_utterance_embed,
lang_id=dummy_language_id).shape)
|