File size: 22,634 Bytes
9e275b8
 
70399da
9e275b8
 
 
 
70399da
 
 
9e275b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70399da
 
 
 
 
9e275b8
 
70399da
9e275b8
 
 
70399da
 
 
 
 
 
 
9e275b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70399da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e275b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70399da
 
 
 
 
 
 
 
 
 
 
 
 
9e275b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70399da
 
 
 
9e275b8
 
 
 
 
 
70399da
 
9e275b8
70399da
 
 
 
9e275b8
 
 
 
 
 
70399da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e275b8
 
 
 
 
 
 
 
70399da
9e275b8
 
 
 
 
 
 
 
 
 
 
70399da
9e275b8
70399da
 
 
 
 
9e275b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70399da
9e275b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70399da
9e275b8
 
 
 
 
 
 
 
 
 
 
70399da
 
9e275b8
 
 
 
 
 
 
 
 
 
70399da
 
 
9e275b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import dotwiz
import torch
import torch.nn.functional as torchfunc
from torch.nn import Linear
from torch.nn import Sequential
from torch.nn import Tanh

from Modules.GeneralLayers.Conformer import Conformer
from Modules.GeneralLayers.LengthRegulator import LengthRegulator
from Modules.ToucanTTS.flow_matching import CFMDecoder
from Preprocessing.articulatory_features import get_feature_to_index_lookup
from Utility.utils import make_non_pad_mask


class ToucanTTS(torch.nn.Module):

    def __init__(self,
                 weights,
                 config):
        super().__init__()

        self.config = config
        config = dotwiz.DotWiz(config)

        input_feature_dimensions = config.input_feature_dimensions
        attention_dimension = config.attention_dimension
        attention_heads = config.attention_heads
        positionwise_conv_kernel_size = config.positionwise_conv_kernel_size
        use_scaled_positional_encoding = config.use_scaled_positional_encoding
        use_macaron_style_in_conformer = config.use_macaron_style_in_conformer
        use_cnn_in_conformer = config.use_cnn_in_conformer
        encoder_layers = config.encoder_layers
        encoder_units = config.encoder_units
        encoder_normalize_before = config.encoder_normalize_before
        encoder_concat_after = config.encoder_concat_after
        conformer_encoder_kernel_size = config.conformer_encoder_kernel_size
        transformer_enc_dropout_rate = config.transformer_enc_dropout_rate
        transformer_enc_positional_dropout_rate = config.transformer_enc_positional_dropout_rate
        transformer_enc_attn_dropout_rate = config.transformer_enc_attn_dropout_rate
        decoder_layers = config.decoder_layers
        decoder_units = config.decoder_units
        decoder_concat_after = config.decoder_concat_after
        conformer_decoder_kernel_size = config.conformer_decoder_kernel_size
        decoder_normalize_before = config.decoder_normalize_before
        transformer_dec_dropout_rate = config.transformer_dec_dropout_rate
        transformer_dec_positional_dropout_rate = config.transformer_dec_positional_dropout_rate
        transformer_dec_attn_dropout_rate = config.transformer_dec_attn_dropout_rate
        duration_predictor_layers = config.duration_predictor_layers
        duration_predictor_kernel_size = config.duration_predictor_kernel_size
        duration_predictor_dropout_rate = config.duration_predictor_dropout_rate
        pitch_predictor_layers = config.pitch_predictor_layers
        pitch_predictor_kernel_size = config.pitch_predictor_kernel_size
        pitch_predictor_dropout = config.pitch_predictor_dropout
        pitch_embed_kernel_size = config.pitch_embed_kernel_size
        pitch_embed_dropout = config.pitch_embed_dropout
        energy_predictor_layers = config.energy_predictor_layers
        energy_predictor_kernel_size = config.energy_predictor_kernel_size
        energy_predictor_dropout = config.energy_predictor_dropout
        energy_embed_kernel_size = config.energy_embed_kernel_size
        energy_embed_dropout = config.energy_embed_dropout
        cfm_filter_channels = config.cfm_filter_channels
        cfm_heads = config.cfm_heads
        cfm_layers = config.cfm_layers
        cfm_kernel_size = config.cfm_kernel_size
        cfm_p_dropout = config.cfm_p_dropout
        utt_embed_dim = config.utt_embed_dim
        lang_embs = config.lang_embs
        spec_channels = config.spec_channels
        embedding_integration = config.embedding_integration
        lang_emb_size = config.lang_emb_size
        integrate_language_embedding_into_encoder_out = config.integrate_language_embedding_into_encoder_out
        prosody_channels = config.prosody_channels

        if lang_embs is None or lang_embs == 0:
            lang_embs = None
            integrate_language_embedding_into_encoder_out = False
        if integrate_language_embedding_into_encoder_out:
            utt_embed_dim = utt_embed_dim + lang_emb_size

        self.input_feature_dimensions = input_feature_dimensions
        self.attention_dimension = attention_dimension
        self.use_scaled_pos_enc = use_scaled_positional_encoding
        self.multilingual_model = lang_embs is not None
        self.multispeaker_model = utt_embed_dim is not None
        self.integrate_language_embedding_into_encoder_out = integrate_language_embedding_into_encoder_out
        self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"]

        articulatory_feature_embedding = Sequential(Linear(input_feature_dimensions, 100), Tanh(), Linear(100, attention_dimension))
        self.encoder = Conformer(conformer_type="encoder",
                                 attention_dim=attention_dimension,
                                 attention_heads=attention_heads,
                                 linear_units=encoder_units,
                                 num_blocks=encoder_layers,
                                 input_layer=articulatory_feature_embedding,
                                 dropout_rate=transformer_enc_dropout_rate,
                                 positional_dropout_rate=transformer_enc_positional_dropout_rate,
                                 attention_dropout_rate=transformer_enc_attn_dropout_rate,
                                 normalize_before=encoder_normalize_before,
                                 concat_after=encoder_concat_after,
                                 positionwise_conv_kernel_size=positionwise_conv_kernel_size,
                                 macaron_style=use_macaron_style_in_conformer,
                                 use_cnn_module=True,
                                 cnn_module_kernel=conformer_encoder_kernel_size,
                                 zero_triu=False,
                                 utt_embed=utt_embed_dim,
                                 lang_embs=lang_embs,
                                 lang_emb_size=lang_emb_size,
                                 use_output_norm=True,
                                 embedding_integration=embedding_integration)

        self.duration_predictor = CFMDecoder(hidden_channels=prosody_channels,
                                             out_channels=1,
                                             filter_channels=prosody_channels,
                                             n_heads=1,
                                             n_layers=duration_predictor_layers,
                                             kernel_size=duration_predictor_kernel_size,
                                             p_dropout=duration_predictor_dropout_rate,
                                             gin_channels=utt_embed_dim)

        self.pitch_predictor = CFMDecoder(hidden_channels=prosody_channels,
                                          out_channels=1,
                                          filter_channels=prosody_channels,
                                          n_heads=1,
                                          n_layers=pitch_predictor_layers,
                                          kernel_size=pitch_predictor_kernel_size,
                                          p_dropout=pitch_predictor_dropout,
                                          gin_channels=utt_embed_dim)

        self.energy_predictor = CFMDecoder(hidden_channels=prosody_channels,
                                           out_channels=1,
                                           filter_channels=prosody_channels,
                                           n_heads=1,
                                           n_layers=energy_predictor_layers,
                                           kernel_size=energy_predictor_kernel_size,
                                           p_dropout=energy_predictor_dropout,
                                           gin_channels=utt_embed_dim)

        self.pitch_embed = Sequential(torch.nn.Conv1d(in_channels=1,
                                                      out_channels=attention_dimension,
                                                      kernel_size=pitch_embed_kernel_size,
                                                      padding=(pitch_embed_kernel_size - 1) // 2),
                                      torch.nn.Dropout(pitch_embed_dropout))

        self.energy_embed = Sequential(torch.nn.Conv1d(in_channels=1,
                                                       out_channels=attention_dimension,
                                                       kernel_size=energy_embed_kernel_size,
                                                       padding=(energy_embed_kernel_size - 1) // 2),
                                       torch.nn.Dropout(energy_embed_dropout))

        self.length_regulator = LengthRegulator()

        self.decoder = Conformer(conformer_type="decoder",
                                 attention_dim=attention_dimension,
                                 attention_heads=attention_heads,
                                 linear_units=decoder_units,
                                 num_blocks=decoder_layers,
                                 input_layer=None,
                                 dropout_rate=transformer_dec_dropout_rate,
                                 positional_dropout_rate=transformer_dec_positional_dropout_rate,
                                 attention_dropout_rate=transformer_dec_attn_dropout_rate,
                                 normalize_before=decoder_normalize_before,
                                 concat_after=decoder_concat_after,
                                 positionwise_conv_kernel_size=positionwise_conv_kernel_size,
                                 macaron_style=use_macaron_style_in_conformer,
                                 use_cnn_module=use_cnn_in_conformer,
                                 cnn_module_kernel=conformer_decoder_kernel_size,
                                 use_output_norm=not embedding_integration in ["AdaIN", "ConditionalLayerNorm"],
                                 utt_embed=utt_embed_dim,
                                 embedding_integration=embedding_integration)

        self.output_projection = torch.nn.Linear(attention_dimension, spec_channels)
        self.pitch_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels)
        self.energy_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels)
        self.duration_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels)

        self.flow_matching_decoder = CFMDecoder(hidden_channels=spec_channels,
                                                out_channels=spec_channels,
                                                filter_channels=cfm_filter_channels,
                                                n_heads=cfm_heads,
                                                n_layers=cfm_layers,
                                                kernel_size=cfm_kernel_size,
                                                p_dropout=cfm_p_dropout,
                                                gin_channels=utt_embed_dim)
        self.load_state_dict(weights)
        self.eval()

    def _forward(self,
                 text_tensors,
                 text_lengths,
                 gold_durations=None,
                 gold_pitch=None,
                 gold_energy=None,
                 duration_scaling_factor=1.0,
                 utterance_embedding=None,
                 lang_ids=None,
                 pitch_variance_scale=1.0,
                 energy_variance_scale=1.0,
                 pause_duration_scaling_factor=1.0,
                 prosody_creativity=0.1):

        text_tensors = torch.clamp(text_tensors, max=1.0)
        # this is necessary, because of the way we represent modifiers to keep them identifiable.

        if not self.multilingual_model:
            lang_ids = None

        if not self.multispeaker_model:
            utterance_embedding = None

        if utterance_embedding is not None:
            utterance_embedding = torch.nn.functional.normalize(utterance_embedding)
            if self.integrate_language_embedding_into_encoder_out and lang_ids is not None:
                lang_embs = self.encoder.language_embedding(lang_ids)
                lang_embs = torch.nn.functional.normalize(lang_embs)
                utterance_embedding = torch.cat([lang_embs, utterance_embedding], dim=1).detach()

        # encoding the texts
        text_masks = make_non_pad_mask(text_lengths, device=text_lengths.device).unsqueeze(-2)
        encoded_texts, _ = self.encoder(text_tensors, text_masks, utterance_embedding=utterance_embedding, lang_ids=lang_ids)

        # predicting pitch, energy and durations
        reduced_pitch_space = torchfunc.dropout(self.pitch_latent_reduction(encoded_texts), p=0.1).transpose(1, 2)
        pitch_predictions = self.pitch_predictor(mu=reduced_pitch_space,
                                                 mask=text_masks.float(),
                                                 n_timesteps=10,
                                                 temperature=prosody_creativity,
                                                 c=utterance_embedding) if gold_pitch is None else gold_pitch
        pitch_predictions = _scale_variance(pitch_predictions, pitch_variance_scale)
        embedded_pitch_curve = self.pitch_embed(pitch_predictions).transpose(1, 2)

        reduced_energy_space = torchfunc.dropout(self.energy_latent_reduction(encoded_texts + embedded_pitch_curve), p=0.1).transpose(1, 2)
        energy_predictions = self.energy_predictor(mu=reduced_energy_space,
                                                   mask=text_masks.float(),
                                                   n_timesteps=10,
                                                   temperature=prosody_creativity,
                                                   c=utterance_embedding) if gold_energy is None else gold_energy
        energy_predictions = _scale_variance(energy_predictions, energy_variance_scale)
        embedded_energy_curve = self.energy_embed(energy_predictions).transpose(1, 2)

        reduced_duration_space = torchfunc.dropout(self.duration_latent_reduction(encoded_texts + embedded_pitch_curve + embedded_energy_curve), p=0.1).transpose(1, 2)
        predicted_durations = torch.clamp(torch.ceil(self.duration_predictor(mu=reduced_duration_space,
                                                                             mask=text_masks.float(),
                                                                             n_timesteps=10,
                                                                             temperature=prosody_creativity,
                                                                             c=utterance_embedding)), min=0.0).long().squeeze(1) if gold_durations is None else gold_durations

        # modifying the predictions with control parameters
        for phoneme_index, phoneme_vector in enumerate(text_tensors.squeeze(0)):
            if phoneme_vector[get_feature_to_index_lookup()["word-boundary"]] == 1:
                predicted_durations[0][phoneme_index] = 0
            if phoneme_vector[get_feature_to_index_lookup()["silence"]] == 1 and pause_duration_scaling_factor != 1.0:
                predicted_durations[0][phoneme_index] = torch.round(predicted_durations[0][phoneme_index].float() * pause_duration_scaling_factor).long()
        if duration_scaling_factor != 1.0:
            assert duration_scaling_factor > 0.0
            predicted_durations = torch.round(predicted_durations.float() * duration_scaling_factor).long()

        # enriching the text with pitch and energy info
        enriched_encoded_texts = encoded_texts + embedded_pitch_curve + embedded_energy_curve

        # predicting durations for text and upsampling accordingly
        upsampled_enriched_encoded_texts = self.length_regulator(enriched_encoded_texts, predicted_durations)

        # decoding spectrogram
        decoded_speech, _ = self.decoder(upsampled_enriched_encoded_texts, None, utterance_embedding=utterance_embedding)

        preliminary_spectrogram = self.output_projection(decoded_speech)

        refined_codec_frames = self.flow_matching_decoder(mu=preliminary_spectrogram.transpose(1, 2),
                                                          mask=make_non_pad_mask([len(decoded_speech[0])], device=decoded_speech.device).unsqueeze(-2),
                                                          n_timesteps=15,
                                                          temperature=0.1,  # low temperature, so the model follows the specified prosody curves better.
                                                          c=None).transpose(1, 2)

        return refined_codec_frames, predicted_durations.squeeze(), pitch_predictions.squeeze(), energy_predictions.squeeze()

    @torch.inference_mode()
    def forward(self,
                text,
                durations=None,
                pitch=None,
                energy=None,
                utterance_embedding=None,
                return_duration_pitch_energy=False,
                lang_id=None,
                duration_scaling_factor=1.0,
                pitch_variance_scale=1.0,
                energy_variance_scale=1.0,
                pause_duration_scaling_factor=1.0,
                prosody_creativity=0.1):
        """
        Generate the sequence of spectrogram frames given the sequence of vectorized phonemes.

        Args:
            text: input sequence of vectorized phonemes
            durations: durations to be used (optional, if not provided, they will be predicted)
            pitch: token-averaged pitch curve to be used (optional, if not provided, it will be predicted)
            energy: token-averaged energy curve to be used (optional, if not provided, it will be predicted)
            return_duration_pitch_energy: whether to return the list of predicted durations for nicer plotting
            utterance_embedding: embedding of speaker information
            lang_id: id to be fed into the embedding layer that contains language information
            duration_scaling_factor: reasonable values are 0.8 < scale < 1.2.
                                     1.0 means no scaling happens, higher values increase durations for the whole
                                     utterance, lower values decrease durations for the whole utterance.
            pitch_variance_scale: reasonable values are 0.6 < scale < 1.4.
                                  1.0 means no scaling happens, higher values increase variance of the pitch curve,
                                  lower values decrease variance of the pitch curve.
            energy_variance_scale: reasonable values are 0.6 < scale < 1.4.
                                   1.0 means no scaling happens, higher values increase variance of the energy curve,
                                   lower values decrease variance of the energy curve.
            pause_duration_scaling_factor: reasonable values are 0.6 < scale < 1.4.
                                   scales the durations of pauses on top of the regular duration scaling

        Returns:
            features spectrogram

        """
        # setup batch axis
        text_length = torch.tensor([text.shape[0]], dtype=torch.long, device=text.device)
        if durations is not None:
            durations = durations.unsqueeze(0).to(text.device)
        if pitch is not None:
            pitch = pitch.unsqueeze(0).to(text.device)
        if energy is not None:
            energy = energy.unsqueeze(0).to(text.device)
        if lang_id is not None:
            lang_id = lang_id.to(text.device)

        outs, \
        predicted_durations, \
        pitch_predictions, \
        energy_predictions = self._forward(text.unsqueeze(0),
                                           text_length,
                                           gold_durations=durations,
                                           gold_pitch=pitch,
                                           gold_energy=energy,
                                           utterance_embedding=utterance_embedding.unsqueeze(0) if utterance_embedding is not None else None, lang_ids=lang_id,
                                           duration_scaling_factor=duration_scaling_factor,
                                           pitch_variance_scale=pitch_variance_scale,
                                           energy_variance_scale=energy_variance_scale,
                                           pause_duration_scaling_factor=pause_duration_scaling_factor,
                                           prosody_creativity=prosody_creativity)

        if return_duration_pitch_energy:
            return outs.squeeze().transpose(0, 1), predicted_durations, pitch_predictions, energy_predictions
        return outs.squeeze().transpose(0, 1)

    def store_inverse_all(self):
        def remove_weight_norm(m):
            try:
                torch.nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        # self.post_flow.store_inverse()  # we're no longer using glow, so this is deprecated
        self.apply(remove_weight_norm)


def _scale_variance(sequence, scale):
    if scale == 1.0:
        return sequence
    average = sequence[0][sequence[0] != 0.0].mean()
    sequence = sequence - average  # center sequence around 0
    sequence = sequence * scale  # scale the variance
    sequence = sequence + average  # move center back to original with changed variance
    for sequence_index in range(len(sequence[0][0])):
        if sequence[0][0][sequence_index] < 0.0:
            sequence[0][0][sequence_index] = 0.0
    return sequence


def smooth_time_series(matrix, n_neighbors):
    """
    Smooth a 2D matrix along the time axis using a moving average.

    Parameters:
    - matrix (torch.Tensor): Input matrix (2D tensor) representing the time series.
    - n_neighbors (int): Number of neighboring rows to include in the moving average.

    Returns:
    - torch.Tensor: Smoothed matrix.
    """
    smoothed_matrix = torch.zeros_like(matrix)
    for i in range(matrix.size(0)):
        lower = max(0, i - n_neighbors)
        upper = min(matrix.size(0), i + n_neighbors + 1)
        smoothed_matrix[i] = torch.mean(matrix[lower:upper], dim=0)

    return smoothed_matrix


def make_near_zero_to_zero(sequence):
    for index in range(len(sequence)):
        if sequence[index] < 0.2:
            sequence[index] = 0.0
    return sequence