File size: 5,793 Bytes
f23c138
 
cea6632
 
 
 
 
 
c8c05d4
49696ae
 
cea6632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed7f208
 
502b0b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea6632
502b0b6
 
 
 
 
 
 
 
cea6632
 
 
 
 
1d606bc
cea6632
 
5468bc2
 
 
cea6632
 
 
 
 
 
 
 
502b0b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea6632
 
 
 
 
 
404e64b
1d606bc
404e64b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os

import gradio as gr
import numpy as np
import torch

from InferenceInterfaces.Meta_FastSpeech2 import Meta_FastSpeech2

os.system("pip uninstall -y gradio")
os.system("pip install gradio==2.7.5.2")


def float2pcm(sig, dtype='int16'):
    """
    https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182
    """
    sig = np.asarray(sig)
    if sig.dtype.kind != 'f':
        raise TypeError("'sig' must be a float array")
    dtype = np.dtype(dtype)
    if dtype.kind not in 'iu':
        raise TypeError("'dtype' must be an integer type")
    i = np.iinfo(dtype)
    abs_max = 2 ** (i.bits - 1)
    offset = i.min + abs_max
    return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype)


class TTS_Interface:

    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model = Meta_FastSpeech2(device=self.device)
        self.current_speaker = "English Speaker's Voice"
        self.current_language = "English"
        self.language_id_lookup = {
            "English"   : "en",
            "German"    : "de",
            "Greek"     : "el",
            "Spanish"   : "es",
            "Finnish"   : "fi",
            "Russian"   : "ru",
            "Hungarian" : "hu",
            "Dutch"     : "nl",
            "French"    : "fr",
            'Polish'    : "pl",
            'Portuguese': "pt",
            'Italian'   : "it",
            }
        self.speaker_path_lookup = {
            "English Speaker's Voice"  : "reference_audios/english.wav",
            "German Speaker's Voice"    : "reference_audios/german.wav",
            "Greek Speaker's Voice"     : "reference_audios/greek.wav",
            "Spanish Speaker's Voice"   : "reference_audios/spanish.wav",
            "Finnish Speaker's Voice"   : "reference_audios/finnish.wav",
            "Russian Speaker's Voice"   : "reference_audios/russian.wav",
            "Hungarian Speaker's Voice" : "reference_audios/hungarian.wav",
            "Dutch Speaker's Voice"     : "reference_audios/dutch.wav",
            "French Speaker's Voice"    : "reference_audios/french.wav",
            "Polish Speaker's Voice"    : "reference_audios/polish.flac",
            "Portuguese Speaker's Voice": "reference_audios/portuguese.flac",
            "Italian Speaker's Voice"  : "reference_audios/italian.flac",
            }

    def read(self, prompt, language, speaker):
        if self.current_language != language:
            self.model.set_language(self.language_id_lookup[language])
            self.current_language = language
        if self.current_speaker != speaker:
            self.model.set_utterance_embedding(self.speaker_path_lookup[speaker])
            self.current_speaker = speaker
        wav = self.model(prompt)
        return 48000, float2pcm(wav.cpu().numpy())


meta_model = TTS_Interface()
article = "<p style='text-align: left'>This is still a work in progress, models will be exchanged for better ones as soon as they are done. All of those languages are spoken by a single model. Speakers can be transferred across languages. More languages will be added soon.</p><p style='text-align: center'><a href='https://github.com/DigitalPhonetics/IMS-Toucan' target='_blank'>Click here to learn more about the IMS Toucan Speech Synthesis Toolkit</a></p>"

iface = gr.Interface(fn=meta_model.read,
                     inputs=[gr.inputs.Textbox(lines=2,
                                               placeholder="write what you want the synthesis to read here...",
                                               label=" "),
                             gr.inputs.Dropdown(['English',
                                                 'German',
                                                 'Greek',
                                                 'Spanish',
                                                 'Finnish',
                                                 'Russian',
                                                 'Hungarian',
                                                 'Dutch',
                                                 'French',
                                                 'Polish',
                                                 'Portuguese',
                                                 'Italian'], type="value", default='English', label="Language Selection"),
                             gr.inputs.Dropdown(["English Speaker's Voice",
                                                 "German Speaker's Voice",
                                                 "Greek Speaker's Voice",
                                                 "Spanish Speaker's Voice",
                                                 "Finnish Speaker's Voice",
                                                 "Russian Speaker's Voice",
                                                 "Hungarian Speaker's Voice",
                                                 "Dutch Speaker's Voice",
                                                 "French Speaker's Voice",
                                                 "Polish Speaker's Voice",
                                                 "Portuguese Speaker's Voice",
                                                 "Italian Speaker's Voice"], type="value", default="English Speaker's Voice", label="Speaker Selection")],
                     outputs=gr.outputs.Audio(type="numpy", label=None),
                     layout="vertical",
                     title="IMS Toucan Multilingual Multispeaker Demo",
                     thumbnail="Utility/toucan.png",
                     theme="default",
                     allow_flagging="never",
                     allow_screenshot=False,
                     article=article)
iface.launch(enable_queue=True)