Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn import AvgPool1d | |
| from torch.nn import Conv1d | |
| from torch.nn import Conv2d | |
| from torch.nn import ConvTranspose1d | |
| from torch.nn.utils import remove_weight_norm | |
| from torch.nn.utils import spectral_norm | |
| from torch.nn.utils import weight_norm | |
| from Preprocessing.Codec.utils import get_padding | |
| from Preprocessing.Codec.utils import init_weights | |
| LRELU_SLOPE = 0.1 | |
| class ResBlock1(torch.nn.Module): | |
| def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super(ResBlock1, self).__init__() | |
| self.h = h | |
| self.convs1 = nn.ModuleList([ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]))), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]))), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[2], | |
| padding=get_padding(kernel_size, dilation[2]))) | |
| ]) | |
| self.convs1.apply(init_weights) | |
| self.convs2 = nn.ModuleList([ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1))), weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1))), weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1))) | |
| ]) | |
| self.convs2.apply(init_weights) | |
| def forward(self, x): | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c1(xt) | |
| xt = F.leaky_relu(xt, LRELU_SLOPE) | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_weight_norm(l) | |
| for l in self.convs2: | |
| remove_weight_norm(l) | |
| class ResBlock2(torch.nn.Module): | |
| def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): | |
| super(ResBlock2, self).__init__() | |
| self.h = h | |
| self.convs = nn.ModuleList([ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]))), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]))) | |
| ]) | |
| self.convs.apply(init_weights) | |
| def forward(self, x): | |
| for c in self.convs: | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs: | |
| remove_weight_norm(l) | |
| class Generator(torch.nn.Module): | |
| def __init__(self, h): | |
| super(Generator, self).__init__() | |
| self.h = h | |
| self.num_kernels = len(h.resblock_kernel_sizes) | |
| self.num_upsamples = len(h.upsample_rates) | |
| self.conv_pre = weight_norm( | |
| Conv1d(512, h.upsample_initial_channel, 7, 1, padding=3)) | |
| resblock = ResBlock1 if h.resblock == '1' else ResBlock2 | |
| self.ups = nn.ModuleList() | |
| for i, (u, | |
| k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): | |
| self.ups.append( | |
| weight_norm( | |
| ConvTranspose1d( | |
| h.upsample_initial_channel // (2 ** i), | |
| h.upsample_initial_channel // (2 ** (i + 1)), | |
| k, | |
| u, | |
| # padding=(u//2 + u%2), | |
| padding=(k - u) // 2, | |
| # output_padding=u%2 | |
| ))) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = h.upsample_initial_channel // (2 ** (i + 1)) | |
| for j, (k, d) in enumerate( | |
| zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): | |
| self.resblocks.append(resblock(h, ch, k, d)) | |
| self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| def forward(self, x): | |
| x = self.conv_pre(x) | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| x = self.ups[i](x) | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i * self.num_kernels + j](x) | |
| else: | |
| xs += self.resblocks[i * self.num_kernels + j](x) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| x = self.conv_post(x) | |
| x = torch.tanh(x) | |
| return x | |
| def remove_weight_norm(self): | |
| # print('Removing weight norm...') | |
| for l in self.ups: | |
| remove_weight_norm(l) | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| remove_weight_norm(self.conv_pre) | |
| remove_weight_norm(self.conv_post) | |
| class DiscriminatorP(torch.nn.Module): | |
| def __init__(self, period, kernel_size=5, stride=3, | |
| use_spectral_norm=False): | |
| super(DiscriminatorP, self).__init__() | |
| self.period = period | |
| norm_f = weight_norm if use_spectral_norm is False else spectral_norm | |
| self.convs = nn.ModuleList([ | |
| norm_f( | |
| Conv2d( | |
| 1, | |
| 32, (kernel_size, 1), (stride, 1), | |
| padding=(get_padding(5, 1), 0))), | |
| norm_f( | |
| Conv2d( | |
| 32, | |
| 128, (kernel_size, 1), (stride, 1), | |
| padding=(get_padding(5, 1), 0))), | |
| norm_f( | |
| Conv2d( | |
| 128, | |
| 512, (kernel_size, 1), (stride, 1), | |
| padding=(get_padding(5, 1), 0))), | |
| norm_f( | |
| Conv2d( | |
| 512, | |
| 1024, (kernel_size, 1), (stride, 1), | |
| padding=(get_padding(5, 1), 0))), | |
| norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
| ]) | |
| self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
| def forward(self, x): | |
| fmap = [] | |
| # 1d to 2d | |
| b, c, t = x.shape | |
| if t % self.period != 0: # pad first | |
| n_pad = self.period - (t % self.period) | |
| x = F.pad(x, (0, n_pad), "reflect") | |
| t = t + n_pad | |
| x = x.view(b, c, t // self.period, self.period) | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class MultiPeriodDiscriminator(torch.nn.Module): | |
| def __init__(self): | |
| super(MultiPeriodDiscriminator, self).__init__() | |
| self.discriminators = nn.ModuleList([ | |
| DiscriminatorP(2), | |
| DiscriminatorP(3), | |
| DiscriminatorP(5), | |
| DiscriminatorP(7), | |
| DiscriminatorP(11), | |
| ]) | |
| def forward(self, y, y_hat): | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for i, d in enumerate(self.discriminators): | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class DiscriminatorS(torch.nn.Module): | |
| def __init__(self, use_spectral_norm=False): | |
| super(DiscriminatorS, self).__init__() | |
| norm_f = weight_norm if use_spectral_norm is False else spectral_norm | |
| self.convs = nn.ModuleList([ | |
| norm_f(Conv1d(1, 128, 15, 1, padding=7)), | |
| norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), | |
| norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), | |
| norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), | |
| norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), | |
| norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), | |
| norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
| ]) | |
| self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
| def forward(self, x): | |
| fmap = [] | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class MultiScaleDiscriminator(torch.nn.Module): | |
| def __init__(self): | |
| super(MultiScaleDiscriminator, self).__init__() | |
| self.discriminators = nn.ModuleList([ | |
| DiscriminatorS(use_spectral_norm=True), | |
| DiscriminatorS(), | |
| DiscriminatorS(), | |
| ]) | |
| self.meanpools = nn.ModuleList( | |
| [AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)]) | |
| def forward(self, y, y_hat): | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for i, d in enumerate(self.discriminators): | |
| if i != 0: | |
| y = self.meanpools[i - 1](y) | |
| y_hat = self.meanpools[i - 1](y_hat) | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| def feature_loss(fmap_r, fmap_g): | |
| loss = 0 | |
| for dr, dg in zip(fmap_r, fmap_g): | |
| for rl, gl in zip(dr, dg): | |
| loss += torch.mean(torch.abs(rl - gl)) | |
| return loss * 2 | |
| def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
| loss = 0 | |
| r_losses = [] | |
| g_losses = [] | |
| for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
| r_loss = torch.mean((1 - dr) ** 2) | |
| g_loss = torch.mean(dg ** 2) | |
| loss += (r_loss + g_loss) | |
| r_losses.append(r_loss.item()) | |
| g_losses.append(g_loss.item()) | |
| return loss, r_losses, g_losses | |
| def generator_loss(disc_outputs): | |
| loss = 0 | |
| gen_losses = [] | |
| for dg in disc_outputs: | |
| l = torch.mean((1 - dg) ** 2) | |
| gen_losses.append(l) | |
| loss += l | |
| return loss, gen_losses | |
| class Encoder(torch.nn.Module): | |
| def __init__(self, h): | |
| super(Encoder, self).__init__() | |
| self.h = h | |
| self.num_kernels = len(h.resblock_kernel_sizes) | |
| self.num_upsamples = len(h.upsample_rates) | |
| self.conv_pre = weight_norm(Conv1d(1, 32, 7, 1, padding=3)) | |
| self.normalize = nn.ModuleList() | |
| resblock = ResBlock1 if h.resblock == '1' else ResBlock2 | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate( | |
| list( | |
| reversed( | |
| list(zip(h.upsample_rates, h.upsample_kernel_sizes))))): | |
| self.ups.append( | |
| weight_norm( | |
| Conv1d( | |
| 32 * (2 ** i), | |
| 32 * (2 ** (i + 1)), | |
| k, | |
| u, | |
| padding=((k - u) // 2) | |
| # padding=(u//2 + u%2) | |
| ))) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = 32 * (2 ** (i + 1)) | |
| for j, (k, d) in enumerate( | |
| zip( | |
| list(reversed(h.resblock_kernel_sizes)), | |
| list(reversed(h.resblock_dilation_sizes)))): | |
| self.resblocks.append(resblock(h, ch, k, d)) | |
| self.normalize.append( | |
| torch.nn.GroupNorm(ch // 16, ch, eps=1e-6, affine=True)) | |
| self.conv_post = Conv1d(512, 512, 3, 1, padding=1) | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| def forward(self, x): | |
| x = self.conv_pre(x) | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| x = self.ups[i](x) | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i * self.num_kernels + j](x) | |
| xs = self.normalize[i * self.num_kernels + j](xs) | |
| else: | |
| xs += self.resblocks[i * self.num_kernels + j](x) | |
| xs = self.normalize[i * self.num_kernels + j](xs) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.conv_post(x) | |
| return x | |
| def remove_weight_norm(self): | |
| print('Removing weight norm...') | |
| for l in self.ups: | |
| remove_weight_norm(l) | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| remove_weight_norm(self.conv_pre) | |
| class Quantizer_module(torch.nn.Module): | |
| def __init__(self, n_e, e_dim): | |
| super(Quantizer_module, self).__init__() | |
| self.embedding = nn.Embedding(n_e, e_dim) | |
| self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e) | |
| def forward(self, x): | |
| # compute Euclidean distance | |
| d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) \ | |
| - 2 * torch.matmul(x, self.embedding.weight.T) | |
| min_indicies = torch.argmin(d, 1) | |
| z_q = self.embedding(min_indicies) | |
| return z_q, min_indicies | |
| class Quantizer(torch.nn.Module): | |
| def __init__(self, h): | |
| super(Quantizer, self).__init__() | |
| assert 512 % h.n_code_groups == 0 | |
| self.quantizer_modules = nn.ModuleList([ | |
| Quantizer_module(h.n_codes, 512 // h.n_code_groups) | |
| for _ in range(h.n_code_groups) | |
| ]) | |
| self.quantizer_modules2 = nn.ModuleList([ | |
| Quantizer_module(h.n_codes, 512 // h.n_code_groups) | |
| for _ in range(h.n_code_groups) | |
| ]) | |
| self.h = h | |
| self.codebook_loss_lambda = self.h.codebook_loss_lambda # e.g., 1 | |
| self.commitment_loss_lambda = self.h.commitment_loss_lambda # e.g., 0.25 | |
| self.residual_layer = 2 | |
| self.n_code_groups = h.n_code_groups | |
| def for_one_step(self, xin, idx): | |
| xin = xin.transpose(1, 2) | |
| x = xin.reshape(-1, 512) | |
| x = torch.split(x, 512 // self.h.n_code_groups, dim=-1) | |
| min_indicies = [] | |
| z_q = [] | |
| if idx == 0: | |
| for _x, m in zip(x, self.quantizer_modules): | |
| _z_q, _min_indicies = m(_x) | |
| z_q.append(_z_q) | |
| min_indicies.append(_min_indicies) # B * T, | |
| z_q = torch.cat(z_q, -1).reshape(xin.shape) | |
| # loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2) | |
| loss = self.codebook_loss_lambda * torch.mean((z_q - xin.detach()) ** 2) \ | |
| + self.commitment_loss_lambda * torch.mean((z_q.detach() - xin) ** 2) | |
| z_q = xin + (z_q - xin).detach() | |
| z_q = z_q.transpose(1, 2) | |
| return z_q, loss, min_indicies | |
| else: | |
| for _x, m in zip(x, self.quantizer_modules2): | |
| _z_q, _min_indicies = m(_x) | |
| z_q.append(_z_q) | |
| min_indicies.append(_min_indicies) # B * T, | |
| z_q = torch.cat(z_q, -1).reshape(xin.shape) | |
| # loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2) | |
| loss = self.codebook_loss_lambda * torch.mean((z_q - xin.detach()) ** 2) \ | |
| + self.commitment_loss_lambda * torch.mean((z_q.detach() - xin) ** 2) | |
| z_q = xin + (z_q - xin).detach() | |
| z_q = z_q.transpose(1, 2) | |
| return z_q, loss, min_indicies | |
| def forward(self, xin): | |
| # B, C, T | |
| quantized_out = 0.0 | |
| residual = xin | |
| all_losses = [] | |
| all_indices = [] | |
| for i in range(self.residual_layer): | |
| quantized, loss, indices = self.for_one_step(residual, i) # | |
| residual = residual - quantized | |
| quantized_out = quantized_out + quantized | |
| all_indices.extend(indices) # | |
| all_losses.append(loss) | |
| all_losses = torch.stack(all_losses) | |
| loss = torch.mean(all_losses) | |
| return quantized_out, loss, all_indices | |
| def embed(self, x): | |
| # idx: N, T, 4 | |
| # print('x ', x.shape) | |
| quantized_out = torch.tensor(0.0, device=x.device) | |
| x = torch.split(x, 1, 2) # split, 将最后一个维度分开, 每个属于一个index group | |
| # print('x.shape ', len(x),x[0].shape) | |
| for i in range(self.residual_layer): | |
| ret = [] | |
| if i == 0: | |
| for j in range(self.n_code_groups): | |
| q = x[j] | |
| embed = self.quantizer_modules[j] | |
| q = embed.embedding(q.squeeze(-1)) | |
| ret.append(q) | |
| ret = torch.cat(ret, -1) | |
| # print(ret.shape) | |
| quantized_out = quantized_out + ret | |
| else: | |
| for j in range(self.n_code_groups): | |
| q = x[j + self.n_code_groups] | |
| embed = self.quantizer_modules2[j] | |
| q = embed.embedding(q.squeeze(-1)) | |
| ret.append(q) | |
| ret = torch.cat(ret, -1) | |
| quantized_out = quantized_out + ret | |
| return quantized_out.transpose(1, 2) # N, C, T | |