Spaces:
Running
on
Zero
Running
on
Zero
# Inspired by: https://github.com/Mikubill/sd-webui-controlnet/discussions/1236 and https://github.com/Mikubill/sd-webui-controlnet/discussions/1280 | |
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from packaging import version | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel | |
from diffusers.configuration_utils import FrozenDict, deprecate | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models.attention import BasicTransformerBlock | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
PIL_INTERPOLATION, | |
USE_PEFT_BACKEND, | |
logging, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import UniPCMultistepScheduler | |
>>> from diffusers.utils import load_image | |
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png") | |
>>> pipe = StableDiffusionReferencePipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
safety_checker=None, | |
torch_dtype=torch.float16 | |
).to('cuda:0') | |
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
>>> result_img = pipe(ref_image=input_image, | |
prompt="1girl", | |
num_inference_steps=20, | |
reference_attn=True, | |
reference_adain=True).images[0] | |
>>> result_img.show() | |
``` | |
""" | |
def torch_dfs(model: torch.nn.Module): | |
r""" | |
Performs a depth-first search on the given PyTorch model and returns a list of all its child modules. | |
Args: | |
model (torch.nn.Module): The PyTorch model to perform the depth-first search on. | |
Returns: | |
list: A list of all child modules of the given model. | |
""" | |
result = [model] | |
for child in model.children(): | |
result += torch_dfs(child) | |
return result | |
class StableDiffusionReferencePipeline( | |
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin | |
): | |
r""" | |
Pipeline for Stable Diffusion Reference. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
feature_extractor ([`CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
_optional_components = ["safety_checker", "feature_extractor"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
" file" | |
) | |
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["steps_offset"] = 1 | |
scheduler._internal_dict = FrozenDict(new_config) | |
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} has not set the configuration" | |
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" | |
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" | |
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" | |
" Hub, it would be very nice if you could open a Pull request for the" | |
" `scheduler/scheduler_config.json` file" | |
) | |
deprecate( | |
"skip_prk_steps not set", | |
"1.0.0", | |
deprecation_message, | |
standard_warn=False, | |
) | |
new_config = dict(scheduler.config) | |
new_config["skip_prk_steps"] = True | |
scheduler._internal_dict = FrozenDict(new_config) | |
if safety_checker is None and requires_safety_checker: | |
logger.warning( | |
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
" results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
) | |
if safety_checker is not None and feature_extractor is None: | |
raise ValueError( | |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
) | |
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
version.parse(unet.config._diffusers_version).base_version | |
) < version.parse("0.9.0.dev0") | |
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
deprecation_message = ( | |
"The configuration file of the unet has set the default `sample_size` to smaller than" | |
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" | |
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
" in the config might lead to incorrect results in future versions. If you have downloaded this" | |
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
" the `unet/config.json` file" | |
) | |
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(unet.config) | |
new_config["sample_size"] = 64 | |
unet._internal_dict = FrozenDict(new_config) | |
# Check shapes, assume num_channels_latents == 4, num_channels_mask == 1, num_channels_masked == 4 | |
if unet.config.in_channels != 4: | |
logger.warning( | |
f"You have loaded a UNet with {unet.config.in_channels} input channels, whereas by default," | |
f" {self.__class__} assumes that `pipeline.unet` has 4 input channels: 4 for `num_channels_latents`," | |
". If you did not intend to modify" | |
" this behavior, please check whether you have loaded the right checkpoint." | |
) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
def _default_height_width( | |
self, | |
height: Optional[int], | |
width: Optional[int], | |
image: Union[PIL.Image.Image, torch.Tensor, List[PIL.Image.Image]], | |
) -> Tuple[int, int]: | |
r""" | |
Calculate the default height and width for the given image. | |
Args: | |
height (int or None): The desired height of the image. If None, the height will be determined based on the input image. | |
width (int or None): The desired width of the image. If None, the width will be determined based on the input image. | |
image (PIL.Image.Image or torch.Tensor or list[PIL.Image.Image]): The input image or a list of images. | |
Returns: | |
Tuple[int, int]: A tuple containing the calculated height and width. | |
""" | |
# NOTE: It is possible that a list of images have different | |
# dimensions for each image, so just checking the first image | |
# is not _exactly_ correct, but it is simple. | |
while isinstance(image, list): | |
image = image[0] | |
if height is None: | |
if isinstance(image, PIL.Image.Image): | |
height = image.height | |
elif isinstance(image, torch.Tensor): | |
height = image.shape[2] | |
height = (height // 8) * 8 # round down to nearest multiple of 8 | |
if width is None: | |
if isinstance(image, PIL.Image.Image): | |
width = image.width | |
elif isinstance(image, torch.Tensor): | |
width = image.shape[3] | |
width = (width // 8) * 8 # round down to nearest multiple of 8 | |
return height, width | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs | |
def check_inputs( | |
self, | |
prompt: Optional[Union[str, List[str]]], | |
height: int, | |
width: int, | |
callback_steps: Optional[int], | |
negative_prompt: Optional[str] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[torch.Tensor] = None, | |
ip_adapter_image_embeds: Optional[torch.Tensor] = None, | |
callback_on_step_end_tensor_inputs: Optional[List[str]] = None, | |
) -> None: | |
""" | |
Check the validity of the input arguments for the diffusion model. | |
Args: | |
prompt (Optional[Union[str, List[str]]]): The prompt text or list of prompt texts. | |
height (int): The height of the input image. | |
width (int): The width of the input image. | |
callback_steps (Optional[int]): The number of steps to perform the callback on. | |
negative_prompt (Optional[str]): The negative prompt text. | |
prompt_embeds (Optional[torch.Tensor]): The prompt embeddings. | |
negative_prompt_embeds (Optional[torch.Tensor]): The negative prompt embeddings. | |
ip_adapter_image (Optional[torch.Tensor]): The input adapter image. | |
ip_adapter_image_embeds (Optional[torch.Tensor]): The input adapter image embeddings. | |
callback_on_step_end_tensor_inputs (Optional[List[str]]): The list of tensor inputs to perform the callback on. | |
Raises: | |
ValueError: If `height` or `width` is not divisible by 8. | |
ValueError: If `callback_steps` is not a positive integer. | |
ValueError: If `callback_on_step_end_tensor_inputs` contains invalid tensor inputs. | |
ValueError: If both `prompt` and `prompt_embeds` are provided. | |
ValueError: If neither `prompt` nor `prompt_embeds` are provided. | |
ValueError: If `prompt` is not of type `str` or `list`. | |
ValueError: If both `negative_prompt` and `negative_prompt_embeds` are provided. | |
ValueError: If both `prompt_embeds` and `negative_prompt_embeds` are provided and have different shapes. | |
ValueError: If both `ip_adapter_image` and `ip_adapter_image_embeds` are provided. | |
Returns: | |
None | |
""" | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | |
raise ValueError( | |
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
device: torch.device, | |
num_images_per_prompt: int, | |
do_classifier_free_guidance: bool, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
**kwargs, | |
) -> torch.Tensor: | |
r""" | |
Encodes the prompt into embeddings. | |
Args: | |
prompt (Union[str, List[str]]): The prompt text or a list of prompt texts. | |
device (torch.device): The device to use for encoding. | |
num_images_per_prompt (int): The number of images per prompt. | |
do_classifier_free_guidance (bool): Whether to use classifier-free guidance. | |
negative_prompt (Optional[Union[str, List[str]]], optional): The negative prompt text or a list of negative prompt texts. Defaults to None. | |
prompt_embeds (Optional[torch.Tensor], optional): The prompt embeddings. Defaults to None. | |
negative_prompt_embeds (Optional[torch.Tensor], optional): The negative prompt embeddings. Defaults to None. | |
lora_scale (Optional[float], optional): The LoRA scale. Defaults to None. | |
**kwargs: Additional keyword arguments. | |
Returns: | |
torch.Tensor: The encoded prompt embeddings. | |
""" | |
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
prompt_embeds_tuple = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
**kwargs, | |
) | |
# concatenate for backwards comp | |
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt | |
def encode_prompt( | |
self, | |
prompt: Optional[str], | |
device: torch.device, | |
num_images_per_prompt: int, | |
do_classifier_free_guidance: bool, | |
negative_prompt: Optional[str] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
) -> torch.Tensor: | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents( | |
self, | |
batch_size: int, | |
num_channels_latents: int, | |
height: int, | |
width: int, | |
dtype: torch.dtype, | |
device: torch.device, | |
generator: Union[torch.Generator, List[torch.Generator]], | |
latents: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
r""" | |
Prepare the latent vectors for diffusion. | |
Args: | |
batch_size (int): The number of samples in the batch. | |
num_channels_latents (int): The number of channels in the latent vectors. | |
height (int): The height of the latent vectors. | |
width (int): The width of the latent vectors. | |
dtype (torch.dtype): The data type of the latent vectors. | |
device (torch.device): The device to place the latent vectors on. | |
generator (Union[torch.Generator, List[torch.Generator]]): The generator(s) to use for random number generation. | |
latents (Optional[torch.Tensor]): The pre-existing latent vectors. If None, new latent vectors will be generated. | |
Returns: | |
torch.Tensor: The prepared latent vectors. | |
""" | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
int(height) // self.vae_scale_factor, | |
int(width) // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs( | |
self, generator: Union[torch.Generator, List[torch.Generator]], eta: float | |
) -> Dict[str, Any]: | |
r""" | |
Prepare extra keyword arguments for the scheduler step. | |
Args: | |
generator (Union[torch.Generator, List[torch.Generator]]): The generator used for sampling. | |
eta (float): The value of eta (η) used with the DDIMScheduler. Should be between 0 and 1. | |
Returns: | |
Dict[str, Any]: A dictionary containing the extra keyword arguments for the scheduler step. | |
""" | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def prepare_image( | |
self, | |
image: Union[torch.Tensor, PIL.Image.Image, List[Union[torch.Tensor, PIL.Image.Image]]], | |
width: int, | |
height: int, | |
batch_size: int, | |
num_images_per_prompt: int, | |
device: torch.device, | |
dtype: torch.dtype, | |
do_classifier_free_guidance: bool = False, | |
guess_mode: bool = False, | |
) -> torch.Tensor: | |
r""" | |
Prepares the input image for processing. | |
Args: | |
image (torch.Tensor or PIL.Image.Image or list): The input image(s). | |
width (int): The desired width of the image. | |
height (int): The desired height of the image. | |
batch_size (int): The batch size for processing. | |
num_images_per_prompt (int): The number of images per prompt. | |
device (torch.device): The device to use for processing. | |
dtype (torch.dtype): The data type of the image. | |
do_classifier_free_guidance (bool, optional): Whether to perform classifier-free guidance. Defaults to False. | |
guess_mode (bool, optional): Whether to use guess mode. Defaults to False. | |
Returns: | |
torch.Tensor: The prepared image for processing. | |
""" | |
if not isinstance(image, torch.Tensor): | |
if isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
images = [] | |
for image_ in image: | |
image_ = image_.convert("RGB") | |
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) | |
image_ = np.array(image_) | |
image_ = image_[None, :] | |
images.append(image_) | |
image = images | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = (image - 0.5) / 0.5 | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
if do_classifier_free_guidance and not guess_mode: | |
image = torch.cat([image] * 2) | |
return image | |
def prepare_ref_latents( | |
self, | |
refimage: torch.Tensor, | |
batch_size: int, | |
dtype: torch.dtype, | |
device: torch.device, | |
generator: Union[int, List[int]], | |
do_classifier_free_guidance: bool, | |
) -> torch.Tensor: | |
r""" | |
Prepares reference latents for generating images. | |
Args: | |
refimage (torch.Tensor): The reference image. | |
batch_size (int): The desired batch size. | |
dtype (torch.dtype): The data type of the tensors. | |
device (torch.device): The device to perform computations on. | |
generator (int or list): The generator index or a list of generator indices. | |
do_classifier_free_guidance (bool): Whether to use classifier-free guidance. | |
Returns: | |
torch.Tensor: The prepared reference latents. | |
""" | |
refimage = refimage.to(device=device, dtype=dtype) | |
# encode the mask image into latents space so we can concatenate it to the latents | |
if isinstance(generator, list): | |
ref_image_latents = [ | |
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i]) | |
for i in range(batch_size) | |
] | |
ref_image_latents = torch.cat(ref_image_latents, dim=0) | |
else: | |
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator) | |
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents | |
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method | |
if ref_image_latents.shape[0] < batch_size: | |
if not batch_size % ref_image_latents.shape[0] == 0: | |
raise ValueError( | |
"The passed images and the required batch size don't match. Images are supposed to be duplicated" | |
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed." | |
" Make sure the number of images that you pass is divisible by the total requested batch size." | |
) | |
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1) | |
# aligning device to prevent device errors when concating it with the latent model input | |
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) | |
return ref_image_latents | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
def run_safety_checker( | |
self, image: Union[torch.Tensor, PIL.Image.Image], device: torch.device, dtype: torch.dtype | |
) -> Tuple[Union[torch.Tensor, PIL.Image.Image], Optional[bool]]: | |
r""" | |
Runs the safety checker on the given image. | |
Args: | |
image (Union[torch.Tensor, PIL.Image.Image]): The input image to be checked. | |
device (torch.device): The device to run the safety checker on. | |
dtype (torch.dtype): The data type of the input image. | |
Returns: | |
(image, has_nsfw_concept) Tuple[Union[torch.Tensor, PIL.Image.Image], Optional[bool]]: A tuple containing the processed image and | |
a boolean indicating whether the image has a NSFW (Not Safe for Work) concept. | |
""" | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
ref_image: Union[torch.Tensor, PIL.Image.Image] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
attention_auto_machine_weight: float = 1.0, | |
gn_auto_machine_weight: float = 1.0, | |
style_fidelity: float = 0.5, | |
reference_attn: bool = True, | |
reference_adain: bool = True, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
ref_image (`torch.Tensor`, `PIL.Image.Image`): | |
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If | |
the type is specified as `torch.Tensor`, it is passed to Reference Control as is. `PIL.Image.Image` can | |
also be accepted as an image. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.0): | |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | |
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
attention_auto_machine_weight (`float`): | |
Weight of using reference query for self attention's context. | |
If attention_auto_machine_weight=1.0, use reference query for all self attention's context. | |
gn_auto_machine_weight (`float`): | |
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins. | |
style_fidelity (`float`): | |
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important, | |
elif style_fidelity=0.0, prompt more important, else balanced. | |
reference_attn (`bool`): | |
Whether to use reference query for self attention's context. | |
reference_adain (`bool`): | |
Whether to use reference adain. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True." | |
# 0. Default height and width to unet | |
height, width = self._default_height_width(height, width, ref_image) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Preprocess reference image | |
ref_image = self.prepare_image( | |
image=ref_image, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=prompt_embeds.dtype, | |
) | |
# 5. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Prepare reference latent variables | |
ref_image_latents = self.prepare_ref_latents( | |
ref_image, | |
batch_size * num_images_per_prompt, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
do_classifier_free_guidance, | |
) | |
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 9. Modify self attention and group norm | |
MODE = "write" | |
uc_mask = ( | |
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt) | |
.type_as(ref_image_latents) | |
.bool() | |
) | |
def hacked_basic_transformer_inner_forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
): | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
# 1. Self-Attention | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
if self.only_cross_attention: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
else: | |
if MODE == "write": | |
self.bank.append(norm_hidden_states.detach().clone()) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if MODE == "read": | |
if attention_auto_machine_weight > self.attn_weight: | |
attn_output_uc = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), | |
# attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
attn_output_c = attn_output_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
attn_output_c[uc_mask] = self.attn1( | |
norm_hidden_states[uc_mask], | |
encoder_hidden_states=norm_hidden_states[uc_mask], | |
**cross_attention_kwargs, | |
) | |
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc | |
self.bank.clear() | |
else: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
if self.attn2 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
# 2. Cross-Attention | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
ff_output = self.ff(norm_hidden_states) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |
def hacked_mid_forward(self, *args, **kwargs): | |
eps = 1e-6 | |
x = self.original_forward(*args, **kwargs) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append(mean) | |
self.var_bank.append(var) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) | |
var_acc = sum(self.var_bank) / float(len(self.var_bank)) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
x_uc = (((x - mean) / std) * std_acc) + mean_acc | |
x_c = x_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
x_c[uc_mask] = x[uc_mask] | |
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc | |
self.mean_bank = [] | |
self.var_bank = [] | |
return x | |
def hack_CrossAttnDownBlock2D_forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
): | |
eps = 1e-6 | |
# TODO(Patrick, William) - attention mask is not used | |
output_states = () | |
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
output_states = output_states + (hidden_states,) | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
def hacked_DownBlock2D_forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
**kwargs: Any, | |
) -> Tuple[torch.Tensor, ...]: | |
eps = 1e-6 | |
output_states = () | |
for i, resnet in enumerate(self.resnets): | |
hidden_states = resnet(hidden_states, temb) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
output_states = output_states + (hidden_states,) | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
def hacked_CrossAttnUpBlock2D_forward( | |
self, | |
hidden_states: torch.Tensor, | |
res_hidden_states_tuple: Tuple[torch.Tensor, ...], | |
temb: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
eps = 1e-6 | |
# TODO(Patrick, William) - attention mask is not used | |
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
def hacked_UpBlock2D_forward( | |
self, | |
hidden_states: torch.Tensor, | |
res_hidden_states_tuple: Tuple[torch.Tensor, ...], | |
temb: Optional[torch.Tensor] = None, | |
upsample_size: Optional[int] = None, | |
**kwargs: Any, | |
) -> torch.Tensor: | |
eps = 1e-6 | |
for i, resnet in enumerate(self.resnets): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
if reference_attn: | |
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] | |
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) | |
for i, module in enumerate(attn_modules): | |
module._original_inner_forward = module.forward | |
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) | |
module.bank = [] | |
module.attn_weight = float(i) / float(len(attn_modules)) | |
if reference_adain: | |
gn_modules = [self.unet.mid_block] | |
self.unet.mid_block.gn_weight = 0 | |
down_blocks = self.unet.down_blocks | |
for w, module in enumerate(down_blocks): | |
module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) | |
gn_modules.append(module) | |
up_blocks = self.unet.up_blocks | |
for w, module in enumerate(up_blocks): | |
module.gn_weight = float(w) / float(len(up_blocks)) | |
gn_modules.append(module) | |
for i, module in enumerate(gn_modules): | |
if getattr(module, "original_forward", None) is None: | |
module.original_forward = module.forward | |
if i == 0: | |
# mid_block | |
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module) | |
elif isinstance(module, CrossAttnDownBlock2D): | |
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D) | |
elif isinstance(module, DownBlock2D): | |
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D) | |
elif isinstance(module, CrossAttnUpBlock2D): | |
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D) | |
elif isinstance(module, UpBlock2D): | |
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D) | |
module.mean_bank = [] | |
module.var_bank = [] | |
module.gn_weight *= 2 | |
# 10. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# ref only part | |
noise = randn_tensor( | |
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype | |
) | |
ref_xt = self.scheduler.add_noise( | |
ref_image_latents, | |
noise, | |
t.reshape( | |
1, | |
), | |
) | |
ref_xt = torch.cat([ref_xt] * 2) if do_classifier_free_guidance else ref_xt | |
ref_xt = self.scheduler.scale_model_input(ref_xt, t) | |
MODE = "write" | |
self.unet( | |
ref_xt, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
) | |
# predict the noise residual | |
MODE = "read" | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |