diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..c734b1cfbab72d854464e6d8c45684446b9b35f2 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,18 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_053639/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_055109/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_173140/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_181436/input.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_181633/input.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_214810/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_214908/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_215043/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_221300/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_222257/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_222442/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_222522/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_223634/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241126_223719/output.png filter=lfs diff=lfs merge=lfs -text +saved_results/20241127_025429/output.png filter=lfs diff=lfs merge=lfs -text diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..029a67a1e2d6e9df4fe9d6697bc5b7ad5c30bfcf --- /dev/null +++ b/app.py @@ -0,0 +1,427 @@ +import spaces +import gradio as gr +import torch +from diffusers import StableDiffusionInpaintPipeline, StableDiffusionImg2ImgPipeline +from PIL import Image +import random +import numpy as np +import torch +import os +import json +from datetime import datetime + +from fluxcombined import FluxPipeline +from scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler + +# Load the Stable Diffusion Inpainting model +scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="scheduler") +pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, scheduler=scheduler) +pipe.to("cuda") # Comment this line if GPU is not available + +# Function to process the image +@spaces.GPU(duration=120) +def process_image( + mode, image_layers, prompt, edit_prompt, seed, randomize_seed, num_inference_steps, + max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input +): + image_with_mask = { + "image": image_layers["background"], + "mask": image_layers["layers"][0] if mask_input is None else mask_input + } + + # Set seed + if randomize_seed or seed is None: + seed = random.randint(0, 2**32 - 1) + generator = torch.Generator("cuda").manual_seed(int(seed)) + + # Unpack image and mask + if image_with_mask is None: + return None, f"❌ Please upload an image and create a mask." + image = image_with_mask["image"] + mask = image_with_mask["mask"] + + if image is None or mask is None: + return None, f"❌ Please ensure both image and mask are provided." + + # Convert images to RGB + image = image.convert("RGB") + mask = mask.split()[-1] # Convert mask to grayscale + + if mode == "Inpainting": + if not prompt: + return None, f"❌ Please provide a prompt for inpainting." + with torch.autocast("cuda"): + # Placeholder for using advanced parameters in the future + # Adjust parameters according to advanced settings if applicable + result = pipe.inpaint( + prompt=prompt, + input_image=image.resize((1024, 1024)), + mask_image=mask.resize((1024, 1024)), + num_inference_steps=num_inference_steps, + guidance_scale=0.5, + generator=generator, + save_masked_image=False, + output_path="", + learning_rate=learning_rate, + max_steps=max_steps + ).images[0] + pipe.vae = pipe.vae.to(torch.float16) + return result, f"✅ Inpainting completed with seed {seed}." + elif mode == "Editing": + if not edit_prompt: + return None, f"❌ Please provide a prompt for editing." + if not prompt: + prompt = "" + # Resize the mask to match the image + # mask = mask.resize(image.size) + with torch.autocast("cuda"): + # Placeholder for using advanced parameters in the future + # Adjust parameters according to advanced settings if applicable + result = pipe.edit2( + prompt=edit_prompt, + input_image=image.resize((1024, 1024)), + mask_image=mask.resize((1024, 1024)), + num_inference_steps=num_inference_steps, + guidance_scale=0.0, + generator=generator, + save_masked_image=False, + output_path="", + learning_rate=learning_rate, + max_steps=max_steps, + optimization_steps=optimization_steps, + true_cfg=true_cfg, + negative_prompt=prompt, + source_steps=max_source_steps, + ).images[0] + return result, f"✅ Editing completed with seed {seed}." + else: + return None, f"❌ Invalid mode selected." + +# Design the Gradio interface +with gr.Blocks() as demo: + gr.Markdown( + """ + + """ + ) + gr.Markdown("

🍲 FlowChef 🍲

") + gr.Markdown("

Inversion/Gradient/Training-free Steering of Flux.1[Dev]

") + gr.Markdown("

Project Page | Paper

(Steering Rectified Flow Models in the Vector Field for Controlled Image Generation)

") + gr.Markdown("

💡 We recommend going through our tutorial introduction before getting started!

") + + # Store current state + current_input_image = None + current_mask = None + current_output_image = None + current_params = {} + + # Images at the top + with gr.Row(): + with gr.Column(): + image_input = gr.ImageMask( + # source="upload", + # tool="sketch", + type="pil", + label="Input Image and Mask", + image_mode="RGBA", + height=512, + width=512, + ) + with gr.Column(): + output_image = gr.Image(label="Output Image") + + # All options below + with gr.Column(): + mode = gr.Radio( + choices=["Inpainting", "Editing"], label="Select Mode", value="Inpainting" + ) + prompt = gr.Textbox( + label="Prompt", + placeholder="Describe what should appear in the masked area..." + ) + edit_prompt = gr.Textbox( + label="Editing Prompt", + placeholder="Describe how you want to edit the image..." + ) + with gr.Row(): + seed = gr.Number(label="Seed (Optional)", value=None) + randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) + num_inference_steps = gr.Slider( + label="Inference Steps", minimum=1, maximum=50, value=30 + ) + # Advanced settings in an accordion + with gr.Accordion("Advanced Settings", open=False): + max_steps = gr.Slider(label="Max Steps", minimum=1, maximum=30, value=30) + learning_rate = gr.Slider(label="Learning Rate", minimum=0.1, maximum=1.0, value=0.5) + true_cfg = gr.Slider(label="Guidance Scale (only for editing)", minimum=1, maximum=20, value=2) + max_source_steps = gr.Slider(label="Max Source Steps (only for editing)", minimum=1, maximum=30, value=20) + optimization_steps = gr.Slider(label="Optimization Steps", minimum=1, maximum=10, value=1) + mask_input = gr.Image( + type="pil", + label="Optional Mask", + image_mode="RGBA", + ) + with gr.Row(): + run_button = gr.Button("Run", variant="primary") + save_button = gr.Button("Save Data", variant="secondary") + + def update_visibility(selected_mode): + if selected_mode == "Inpainting": + return gr.update(visible=True), gr.update(visible=False) + else: + return gr.update(visible=True), gr.update(visible=True) + + mode.change( + update_visibility, + inputs=mode, + outputs=[prompt, edit_prompt], + ) + + def run_and_update_status( + mode, image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps, + max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input + ): + result_image, result_status = process_image( + mode, image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps, + max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input + ) + + # Store current state + global current_input_image, current_mask, current_output_image, current_params + + current_input_image = image_with_mask["background"] if image_with_mask else None + current_mask = mask_input if mask_input is not None else (image_with_mask["layers"][0] if image_with_mask else None) + current_output_image = result_image + current_params = { + "mode": mode, + "prompt": prompt, + "edit_prompt": edit_prompt, + "seed": seed, + "randomize_seed": randomize_seed, + "num_inference_steps": num_inference_steps, + "max_steps": max_steps, + "learning_rate": learning_rate, + "max_source_steps": max_source_steps, + "optimization_steps": optimization_steps, + "true_cfg": true_cfg + } + + return result_image + + def save_data(): + if not os.path.exists("saved_results"): + os.makedirs("saved_results") + + timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") + save_dir = os.path.join("saved_results", timestamp) + os.makedirs(save_dir) + + # Save images + if current_input_image: + current_input_image.save(os.path.join(save_dir, "input.png")) + if current_mask: + current_mask.save(os.path.join(save_dir, "mask.png")) + if current_output_image: + current_output_image.save(os.path.join(save_dir, "output.png")) + + # Save parameters + with open(os.path.join(save_dir, "parameters.json"), "w") as f: + json.dump(current_params, f, indent=4) + + return f"✅ Data saved in {save_dir}" + + run_button.click( + fn=run_and_update_status, + inputs=[ + mode, + image_input, + prompt, + edit_prompt, + seed, + randomize_seed, + num_inference_steps, + max_steps, + learning_rate, + max_source_steps, + optimization_steps, + true_cfg, + mask_input + ], + outputs=output_image, + ) + + save_button.click(fn=save_data) + + gr.Markdown( + "" + ) + + def load_example_image_with_mask(image_path): + # Load the image + image = Image.open(image_path) + # Create an empty mask of the same size + mask = Image.new('L', image.size, 0) + return {"background": image, "layers": [mask], "composite": image} + + examples_dir = "assets" + volcano_dict = load_example_image_with_mask(os.path.join(examples_dir, "vulcano.jpg")) + dog_dict = load_example_image_with_mask(os.path.join(examples_dir, "dog.webp")) + + gr.Examples( + examples=[ + [ + "Inpainting", # mode + "./saved_results/20241126_053639/input.png", # image with mask + "./saved_results/20241126_053639/mask.png", + "./saved_results/20241126_053639/output.png", + "a dog", # prompt + " ", # edit_prompt + 0, # seed + True, # randomize_seed + 30, # num_inference_steps + 30, # max_steps + 1.0, # learning_rate + 20, # max_source_steps + 10, # optimization_steps + 2, # true_cfg + ], + [ + "Inpainting", # mode + "./saved_results/20241126_173140/input.png", # image with mask + "./saved_results/20241126_173140/mask.png", + "./saved_results/20241126_173140/output.png", + "a cat with blue eyes", # prompt + " ", # edit_prompt + 0, # seed + True, # randomize_seed + 30, # num_inference_steps + 20, # max_steps + 1.0, # learning_rate + 20, # max_source_steps + 10, # optimization_steps + 2, # true_cfg + ], + [ + "Editing", # mode + "./saved_results/20241126_181633/input.png", # image with mask + "./saved_results/20241126_181633/mask.png", + "./saved_results/20241126_181633/output.png", + " ", # prompt + "volcano eruption", # edit_prompt + 0, # seed + True, # randomize_seed + 30, # num_inference_steps + 20, # max_steps + 0.5, # learning_rate + 2, # max_source_steps + 3, # optimization_steps + 4.5, # true_cfg + ], + [ + "Editing", # mode + "./saved_results/20241126_214810/input.png", # image with mask + "./saved_results/20241126_214810/mask.png", + "./saved_results/20241126_214810/output.png", + " ", # prompt + "a dog with flowers in the mouth", # edit_prompt + 0, # seed + True, # randomize_seed + 30, # num_inference_steps + 30, # max_steps + 1, # learning_rate + 5, # max_source_steps + 3, # optimization_steps + 4.5, # true_cfg + ], + [ + "Inpainting", # mode + "./saved_results/20241127_025429/input.png", # image with mask + "./saved_results/20241127_025429/mask.png", + "./saved_results/20241127_025429/output.png", + "A building with \"ASU\" written on it.", # prompt + "", # edit_prompt + 52, # seed + False, # randomize_seed + 30, # num_inference_steps + 30, # max_steps + 1, # learning_rate + 20, # max_source_steps + 10, # optimization_steps + 2, # true_cfg + ], + [ + "Inpainting", # mode + "./saved_results/20241126_222257/input.png", # image with mask + "./saved_results/20241126_222257/mask.png", + "./saved_results/20241126_222257/output.png", + "A cute pig with big eyes", # prompt + "", # edit_prompt + 0, # seed + True, # randomize_seed + 30, # num_inference_steps + 20, # max_steps + 1, # learning_rate + 20, # max_source_steps + 5, # optimization_steps + 2, # true_cfg + ], + [ + "Editing", # mode + "./saved_results/20241126_222522/input.png", # image with mask + "./saved_results/20241126_222522/mask.png", + "./saved_results/20241126_222522/output.png", + "A cute rabbit with big eyes", # prompt + "A cute pig with big eyes", # edit_prompt + 0, # seed + True, # randomize_seed + 30, # num_inference_steps + 20, # max_steps + 0.4, # learning_rate + 5, # max_source_steps + 5, # optimization_steps + 4.5, # true_cfg + ], + [ + "Editing", # mode + "./saved_results/20241126_223719/input.png", # image with mask + "./saved_results/20241126_223719/mask.png", + "./saved_results/20241126_223719/output.png", + "a cat", # prompt + "a tiger", # edit_prompt + 0, # seed + True, # randomize_seed + 30, # num_inference_steps + 30, # max_steps + 0.6, # learning_rate + 10, # max_source_steps + 5, # optimization_steps + 4.5, # true_cfg + ], + ], + inputs=[ + mode, + image_input, + mask_input, + output_image, + prompt, + edit_prompt, + seed, + randomize_seed, + num_inference_steps, + max_steps, + learning_rate, + max_source_steps, + optimization_steps, + true_cfg, + ], + # outputs=[output_image], + # fn=run_and_update_status, + # cache_examples=True, + ) +demo.launch() diff --git a/assets/dog.webp b/assets/dog.webp new file mode 100644 index 0000000000000000000000000000000000000000..a6a06d82b3005294c420d83f59f3a8c1bf9ec13a Binary files /dev/null and b/assets/dog.webp differ diff --git a/assets/vulcano.jpg b/assets/vulcano.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2433ee61e0a507a77cf61595f6c4d15bffc9f543 Binary files /dev/null and b/assets/vulcano.jpg differ diff --git a/assets/vulcano_mask.webp b/assets/vulcano_mask.webp new file mode 100644 index 0000000000000000000000000000000000000000..3293b6c76c6a3fbe05fd0b70031d19a2059f9079 Binary files /dev/null and b/assets/vulcano_mask.webp differ diff --git a/fluxcombined.py b/fluxcombined.py new file mode 100644 index 0000000000000000000000000000000000000000..50ad5b16965b5bb63c506635688b6e27d1bfbc3a --- /dev/null +++ b/fluxcombined.py @@ -0,0 +1,1607 @@ +# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from typing import Any, Callable, Dict, List, Optional, Union + +import numpy as np +import torch +from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast + +from diffusers.image_processor import VaeImageProcessor +from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin +from diffusers.models.autoencoders import AutoencoderKL +from diffusers.models.transformers import FluxTransformer2DModel +from scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler +from diffusers.utils import ( + USE_PEFT_BACKEND, + is_torch_xla_available, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from diffusers.utils.torch_utils import randn_tensor +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput + +import os +import torch +import torch.nn as nn +from os.path import expanduser # pylint: disable=import-outside-toplevel +from urllib.request import urlretrieve # pylint: disable=import-outside-toplevel +from torchvision import transforms as TF + +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers import FluxPipeline + + >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) + >>> pipe.to("cuda") + >>> prompt = "A cat holding a sign that says hello world" + >>> # Depending on the variant being used, the pipeline call will slightly vary. + >>> # Refer to the pipeline documentation for more details. + >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] + >>> image.save("flux.png") + ``` +""" + +import sys +sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))) + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +def retrieve_latents( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents + else: + raise AttributeError("Could not access latents of provided encoder_output") + + +def calculate_shift( + image_seq_len, + base_seq_len: int = 256, + max_seq_len: int = 4096, + base_shift: float = 0.5, + max_shift: float = 1.16, +): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin): + r""" + The Flux pipeline for text-to-image generation. + + Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ + + Args: + transformer ([`FluxTransformer2DModel`]): + Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. + scheduler ([`FlowMatchEulerDiscreteScheduler`]): + A scheduler to be used in combination with `transformer` to denoise the encoded image latents. + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically + the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + text_encoder_2 ([`T5EncoderModel`]): + [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically + the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). + tokenizer_2 (`T5TokenizerFast`): + Second Tokenizer of class + [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). + """ + + model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" + _optional_components = [] + _callback_tensor_inputs = ["latents", "prompt_embeds"] + + def __init__( + self, + scheduler: FlowMatchEulerDiscreteScheduler, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + text_encoder_2: T5EncoderModel, + tokenizer_2: T5TokenizerFast, + transformer: FluxTransformer2DModel, + ): + super().__init__() + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + tokenizer=tokenizer, + tokenizer_2=tokenizer_2, + transformer=transformer, + scheduler=scheduler, + ) + self.vae_scale_factor = ( + 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 + ) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.tokenizer_max_length = ( + self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 + ) + self.default_sample_size = 64 + + def _get_t5_prompt_embeds( + self, + prompt: Union[str, List[str]] = None, + num_images_per_prompt: int = 1, + max_sequence_length: int = 512, + device: Optional[torch.device] = None, + dtype: Optional[torch.dtype] = None, + ): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + text_inputs = self.tokenizer_2( + prompt, + padding="max_length", + max_length=max_sequence_length, + truncation=True, + return_length=False, + return_overflowing_tokens=False, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because `max_sequence_length` is set to " + f" {max_sequence_length} tokens: {removed_text}" + ) + + prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] + + dtype = self.text_encoder_2.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + _, seq_len, _ = prompt_embeds.shape + + # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + return prompt_embeds + + def _get_clip_prompt_embeds( + self, + prompt: Union[str, List[str]], + num_images_per_prompt: int = 1, + device: Optional[torch.device] = None, + ): + device = device or self._execution_device + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer_max_length, + truncation=True, + return_overflowing_tokens=False, + return_length=False, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer_max_length} tokens: {removed_text}" + ) + prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) + + # Use pooled output of CLIPTextModel + prompt_embeds = prompt_embeds.pooler_output + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) + + return prompt_embeds + + def encode_prompt( + self, + prompt: Union[str, List[str]], + prompt_2: Union[str, List[str]], + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + max_sequence_length: int = 512, + lora_scale: Optional[float] = None, + ): + r""" + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in all text-encoders + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + + # We only use the pooled prompt output from the CLIPTextModel + pooled_prompt_embeds = self._get_clip_prompt_embeds( + prompt=prompt, + device=device, + num_images_per_prompt=num_images_per_prompt, + ) + prompt_embeds = self._get_t5_prompt_embeds( + prompt=prompt_2, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + ) + + if self.text_encoder is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + if self.text_encoder_2 is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder_2, lora_scale) + + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + # text_ids = text_ids.repeat(num_images_per_prompt, 1, 1) + + return prompt_embeds, pooled_prompt_embeds, text_ids + + def encode_prompt_edit( + self, + prompt: Union[str, List[str]], + prompt_2: Union[str, List[str]], + negative_prompt: Union[str, List[str]] = None, + negative_prompt_2: Union[str, List[str]] = None, + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + max_sequence_length: int = 512, + lora_scale: Optional[float] = None, + do_true_cfg: bool = False, + ): + device = device or self._execution_device + + # Set LoRA scale if applicable + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + if do_true_cfg and negative_prompt is not None: + negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_batch_size = len(negative_prompt) + + if negative_batch_size != batch_size: + raise ValueError( + f"Negative prompt batch size ({negative_batch_size}) does not match prompt batch size ({batch_size})" + ) + + # Concatenate prompts + prompts = prompt + negative_prompt + prompts_2 = ( + prompt_2 + negative_prompt_2 if prompt_2 is not None and negative_prompt_2 is not None else None + ) + else: + prompts = prompt + prompts_2 = prompt_2 + + if prompt_embeds is None: + if prompts_2 is None: + prompts_2 = prompts + + # Get pooled prompt embeddings from CLIPTextModel + pooled_prompt_embeds = self._get_clip_prompt_embeds( + prompt=prompts, + device=device, + num_images_per_prompt=num_images_per_prompt, + ) + prompt_embeds = self._get_t5_prompt_embeds( + prompt=prompts_2, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + ) + + if do_true_cfg and negative_prompt is not None: + # Split embeddings back into positive and negative parts + total_batch_size = batch_size * num_images_per_prompt + positive_indices = slice(0, total_batch_size) + negative_indices = slice(total_batch_size, 2 * total_batch_size) + + positive_pooled_prompt_embeds = pooled_prompt_embeds[positive_indices] + negative_pooled_prompt_embeds = pooled_prompt_embeds[negative_indices] + + positive_prompt_embeds = prompt_embeds[positive_indices] + negative_prompt_embeds = prompt_embeds[negative_indices] + + pooled_prompt_embeds = positive_pooled_prompt_embeds + prompt_embeds = positive_prompt_embeds + + # Unscale LoRA layers + if self.text_encoder is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + + if self.text_encoder_2 is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + + if do_true_cfg and negative_prompt is not None: + return ( + prompt_embeds, + pooled_prompt_embeds, + text_ids, + negative_prompt_embeds, + negative_pooled_prompt_embeds, + ) + else: + return prompt_embeds, pooled_prompt_embeds, text_ids, None, None + + + def check_inputs( + self, + prompt, + prompt_2, + height, + width, + prompt_embeds=None, + pooled_prompt_embeds=None, + callback_on_step_end_tensor_inputs=None, + max_sequence_length=None, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") + + @staticmethod + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height // 2, width // 2, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + + latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape + + # latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) + latent_image_ids = latent_image_ids.reshape( + latent_image_id_height * latent_image_id_width, latent_image_id_channels + ) + + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) + + return latents + + @staticmethod + def _unpack_latents(latents, height, width, vae_scale_factor): + batch_size, num_patches, channels = latents.shape + + height = height // vae_scale_factor + width = width // vae_scale_factor + + latents = latents.view(batch_size, height, width, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + + latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) + + return latents + + def prepare_latents( + self, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + ): + height = 2 * (int(height) // self.vae_scale_factor) + width = 2 * (int(width) // self.vae_scale_factor) + + shape = (batch_size, num_channels_latents, height, width) + + if latents is not None: + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + return latents.to(device=device, dtype=dtype), latent_image_ids + + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + + return latents, latent_image_ids + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + + def prepare_mask_latents( + self, + mask, + masked_image, + batch_size, + num_channels_latents, + num_images_per_prompt, + height, + width, + dtype, + device, + generator, + ): + height = 2 * (int(height) // self.vae_scale_factor) + width = 2 * (int(width) // self.vae_scale_factor) + # resize the mask to latents shape as we concatenate the mask to the latents + # we do that before converting to dtype to avoid breaking in case we're using cpu_offload + # and half precision + mask = torch.nn.functional.interpolate(mask, size=(height, width)) + mask = mask.to(device=device, dtype=dtype) + + batch_size = batch_size * num_images_per_prompt + + masked_image = masked_image.to(device=device, dtype=dtype) + + if masked_image.shape[1] == 16: + masked_image_latents = masked_image + else: + masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) + + masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + + # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError( + "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" + f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" + " of masks that you pass is divisible by the total requested batch size." + ) + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError( + "The passed images and the required batch size don't match. Images are supposed to be duplicated" + f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." + " Make sure the number of images that you pass is divisible by the total requested batch size." + ) + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + + # aligning device to prevent device errors when concating it with the latent model input + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + + masked_image_latents = self._pack_latents( + masked_image_latents, + batch_size, + num_channels_latents, + height, + width, + ) + mask = self._pack_latents( + mask.repeat(1, num_channels_latents, 1, 1), + batch_size, + num_channels_latents, + height, + width, + ) + + return mask, masked_image_latents + + @torch.no_grad() + def inpaint( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 28, + timesteps: List[int] = None, + guidance_scale: float = 7.0, + num_images_per_prompt: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 512, + optimization_steps: int = 3, + learning_rate: float = 0.8, + max_steps: int = 5, + input_image = None, + save_masked_image = False, + output_path="", + mask_image = None, + ): + + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + prompt_2, + height, + width, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + max_sequence_length=max_sequence_length, + ) + + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + lora_scale = ( + self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None + ) + ( + prompt_embeds, + pooled_prompt_embeds, + text_ids, + ) = self.encode_prompt( + prompt=prompt, + prompt_2=prompt_2, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + ) + + # 4. Prepare latent variables + num_channels_latents = self.transformer.config.in_channels // 4 + random_latents, latent_image_ids = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 5. Prepare timesteps + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) + image_seq_len = random_latents.shape[1] + mu = calculate_shift( + image_seq_len, + self.scheduler.config.base_image_seq_len, + self.scheduler.config.max_image_seq_len, + self.scheduler.config.base_shift, + self.scheduler.config.max_shift, + ) + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + timesteps, + sigmas, + mu=mu, + ) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + + # 4. Preprocess image + # Preprocess mask image + mask_image = mask_image.convert("L") + mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype) + mask = TF.Resize(input_image.size, interpolation=TF.InterpolationMode.NEAREST)(mask) + mask = (mask > 0.5) + mask = ~mask + + # # Convert input image to tensor and apply mask + # input_image = TF.ToTensor()(input_image).to(device=device, dtype=self.transformer.dtype) + # input_image = input_image * mask.float().expand_as(input_image) + # input_image = TF.ToPILImage()(input_image.cpu()) + + image = self.image_processor.preprocess(input_image) + image = image.to(device=device, dtype=self.transformer.dtype) + latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor + + + h, w = latents.shape[2], latents.shape[3] + mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype) + mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask) + + # Slightly dilate the mask to increase coverage + kernel_size = 1 # Decreased from 3 to 2 + kernel = torch.ones((1, 1, kernel_size, kernel_size), device=device) + mask = torch.nn.functional.conv2d( + mask.unsqueeze(0), + kernel, + padding=0 + ).squeeze(0) + mask = torch.clamp(mask, 0, 1) + + mask = (mask > 0.1).float() + + # Remove extra channel dimension if present + if len(mask.shape) == 3 and mask.shape[0] == 1: + mask = mask.squeeze(0) + + bool_mask = mask.bool().unsqueeze(0).unsqueeze(0).expand_as(latents) + mask=~bool_mask + + print(mask.shape, latents.shape) + + masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents + masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) + + mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) + + # Decode and save the masked image + if save_masked_image: + with torch.no_grad(): + save_masked_latents = self._unpack_latents(masked_latents, 1024, 1024, self.vae_scale_factor) + save_masked_latents = (save_masked_latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + mask_image = self.vae.decode(save_masked_latents, return_dict=False)[0] + mask_image = self.image_processor.postprocess(mask_image, output_type="pil") + mask_image_path = output_path.replace(".png", "_masked.png") + mask_image[0].save(mask_image_path) + + + # initialize the random noise for denoising + latents = random_latents.clone().detach() + + self.vae = self.vae.to(torch.float32) + + # 9. Denoising loop + self.transformer.eval() + self.vae.eval() + + # 6. Denoising loop + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timestep = t.expand(latents.shape[0]).to(latents.dtype) + + # handle guidance + if self.transformer.config.guidance_embeds: + guidance = torch.tensor([guidance_scale], device=device) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + + noise_pred = self.transformer( + hidden_states=latents, + # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=pooled_prompt_embeds, + encoder_hidden_states=prompt_embeds, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + )[0] + + # compute the previous noisy sample x_t -> x_t-1 + latents_dtype = latents.dtype + + # perform CG + if i < max_steps: + opt_latents = latents.detach().clone() + with torch.enable_grad(): + opt_latents = opt_latents.detach().requires_grad_() + opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True) + # optimizer = torch.optim.Adam([opt_latents], lr=learning_rate) + + for _ in range(optimization_steps): + latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0] + loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean() + + grad = torch.autograd.grad(loss, opt_latents)[0] + # grad = torch.clamp(grad, -0.5, 0.5) + opt_latents = opt_latents - learning_rate * grad + + latents = opt_latents.detach().clone() + + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + if output_type == "latent": + image = latents + + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return FluxPipelineOutput(images=image) + + def get_diff_image(self, latents): + latents = self._unpack_latents(latents, 1024, 1024, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type="pt") + return image + + def load_and_preprocess_image(self, image_path, custom_image_processor, device): + from diffusers.utils import load_image + img = load_image(image_path) + img = img.resize((512, 512)) + return custom_image_processor(img).unsqueeze(0).to(device) + + + @torch.no_grad() + def edit( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + negative_prompt: Union[str, List[str]] = None, # + negative_prompt_2: Optional[Union[str, List[str]]] = None, + true_cfg: float = 1.0, # + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 28, + timesteps: List[int] = None, + guidance_scale: float = 3.5, + num_images_per_prompt: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 512, + optimization_steps: int = 3, + learning_rate: float = 0.8, + max_steps: int = 5, + input_image = None, + save_masked_image = False, + output_path="", + mask_image=None, + source_steps=1, + ): + + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + prompt_2, + height, + width, + # negative_prompt=negative_prompt, + # negative_prompt_2=negative_prompt_2, + prompt_embeds=prompt_embeds, + # negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + max_sequence_length=max_sequence_length, + ) + + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + lora_scale = ( + self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None + ) + do_true_cfg = true_cfg > 1 and negative_prompt is not None + ( + prompt_embeds, + pooled_prompt_embeds, + text_ids, + negative_prompt_embeds, + negative_pooled_prompt_embeds, + ) = self.encode_prompt_edit( + prompt=prompt, + prompt_2=prompt_2, + negative_prompt=negative_prompt, + negative_prompt_2=negative_prompt_2, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + do_true_cfg=do_true_cfg, + ) + # text_ids = text_ids.repeat(batch_size, 1, 1) + + if do_true_cfg: + # Concatenate embeddings + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + + # 4. Prepare latent variables + num_channels_latents = self.transformer.config.in_channels // 4 + random_latents, latent_image_ids = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + # latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1) + + # 5. Prepare timesteps + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) + image_seq_len = random_latents.shape[1] + mu = calculate_shift( + image_seq_len, + self.scheduler.config.base_image_seq_len, + self.scheduler.config.max_image_seq_len, + self.scheduler.config.base_shift, + self.scheduler.config.max_shift, + ) + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + timesteps, + sigmas, + mu=mu, + ) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + + # 4. Preprocess image + image = self.image_processor.preprocess(input_image) + image = image.to(device=device, dtype=self.transformer.dtype) + latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor + + + # Convert PIL image to tensor + if mask_image: + from torchvision import transforms as TF + + h, w = latents.shape[2], latents.shape[3] + mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype) + mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask) + mask = (mask > 0.5).float() + mask = mask.squeeze(0)#.squeeze(0) # Remove the added dimensions + else: + mask = torch.ones_like(latents).to(device=device) + + print(mask.shape, latents.shape) + + bool_mask = mask.unsqueeze(0).unsqueeze(0).expand_as(latents) + mask=(1-bool_mask*1.0).to(latents.dtype) + + masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents + masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) + + source_latents = (latents).clone().detach() # apply the mask and get gt_latents + source_latents = self._pack_latents(source_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) + + mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) + + # initialize the random noise for denoising + latents = random_latents.clone().detach() + + self.vae = self.vae.to(torch.float32) + + # 9. Denoising loop + self.transformer.eval() + self.vae.eval() + + # 6. Denoising loop + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + latent_model_input = torch.cat([latents] * 2) if do_true_cfg else latents + + # handle guidance + if self.transformer.config.guidance_embeds: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latent_model_input.shape[0]) + else: + guidance = None + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype) + + noise_pred = self.transformer( + hidden_states=latent_model_input, + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=pooled_prompt_embeds, + encoder_hidden_states=prompt_embeds, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + )[0] + + if do_true_cfg: + neg_noise_pred, noise_pred = noise_pred.chunk(2) + # noise_pred = neg_noise_pred + true_cfg * (noise_pred - neg_noise_pred) + noise_pred = noise_pred + (1-mask)*(noise_pred - neg_noise_pred) * true_cfg + # else: + # neg_noise_pred, noise_pred = noise_pred.chunk(2) + + # perform CG + if i < max_steps: + opt_latents = latents.detach().clone() + with torch.enable_grad(): + opt_latents = opt_latents.detach().requires_grad_() + opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True) + # optimizer = torch.optim.Adam([opt_latents], lr=learning_rate) + + for _ in range(optimization_steps): + latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0] + if i < source_steps: + loss = (1000*torch.nn.functional.mse_loss(latents_p, source_latents, reduction='none')).mean() + else: + loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean() + + grad = torch.autograd.grad(loss, opt_latents)[0] + # grad = torch.clamp(grad, -0.5, 0.5) + opt_latents = opt_latents - learning_rate * grad + + latents = opt_latents.detach().clone() + + + # compute the previous noisy sample x_t -> x_t-1 + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + if output_type == "latent": + image = latents + + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return FluxPipelineOutput(images=image) + + @torch.no_grad() + def edit2( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + negative_prompt: Union[str, List[str]] = None, # + negative_prompt_2: Optional[Union[str, List[str]]] = None, + true_cfg: float = 1.0, # + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 28, + timesteps: List[int] = None, + guidance_scale: float = 3.5, + num_images_per_prompt: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 512, + optimization_steps: int = 3, + learning_rate: float = 0.8, + max_steps: int = 5, + input_image = None, + save_masked_image = False, + output_path="", + mask_image=None, + source_steps=1, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + will be used instead + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. This is set to 1024 by default for the best results. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. This is set to 1024 by default for the best results. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument + in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is + passed will be used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 7.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. + joint_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. + + Examples: + + Returns: + [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` + is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated + images. + """ + + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + prompt_2, + height, + width, + # negative_prompt=negative_prompt, + # negative_prompt_2=negative_prompt_2, + prompt_embeds=prompt_embeds, + # negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + max_sequence_length=max_sequence_length, + ) + + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + lora_scale = ( + self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None + ) + do_true_cfg = true_cfg > 1 and negative_prompt is not None + ( + prompt_embeds, + pooled_prompt_embeds, + text_ids, + negative_prompt_embeds, + negative_pooled_prompt_embeds, + ) = self.encode_prompt_edit( + prompt=prompt, + prompt_2=prompt_2, + negative_prompt=negative_prompt, + negative_prompt_2=negative_prompt_2, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + do_true_cfg=do_true_cfg, + ) + # text_ids = text_ids.repeat(batch_size, 1, 1) + + if do_true_cfg: + # Concatenate embeddings + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + + # 4. Prepare latent variables + num_channels_latents = self.transformer.config.in_channels // 4 + random_latents, latent_image_ids = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + # latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1) + + # 5. Prepare timesteps + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) + image_seq_len = random_latents.shape[1] + mu = calculate_shift( + image_seq_len, + self.scheduler.config.base_image_seq_len, + self.scheduler.config.max_image_seq_len, + self.scheduler.config.base_shift, + self.scheduler.config.max_shift, + ) + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + timesteps, + sigmas, + mu=mu, + ) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + + # 4. Preprocess image + image = self.image_processor.preprocess(input_image) + image = image.to(device=device, dtype=self.transformer.dtype) + latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor + + + # Convert PIL image to tensor + if mask_image: + from torchvision import transforms as TF + + h, w = latents.shape[2], latents.shape[3] + mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype) + mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask) + mask = (mask > 0.1).float() + mask = mask.squeeze(0)#.squeeze(0) # Remove the added dimensions + else: + mask = torch.ones_like(latents).to(device=device) + + bool_mask = mask.unsqueeze(0).unsqueeze(0).expand_as(latents) + mask=(1-bool_mask*1.0).to(latents.dtype) + + masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents + masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) + + source_latents = (latents).clone().detach() # apply the mask and get gt_latents + source_latents = self._pack_latents(source_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) + + mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) + + # initialize the random noise for denoising + latents = random_latents.clone().detach() + + self.vae = self.vae.to(torch.float32) + + # 9. Denoising loop + self.transformer.eval() + self.vae.eval() + + # 6. Denoising loop + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + latent_model_input = torch.cat([latents] * 2) if do_true_cfg else latents + + # handle guidance + if self.transformer.config.guidance_embeds: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latent_model_input.shape[0]) + else: + guidance = None + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype) + + noise_pred = self.transformer( + hidden_states=latent_model_input, + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=pooled_prompt_embeds, + encoder_hidden_states=prompt_embeds, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + )[0] + + if do_true_cfg and i < max_steps: + neg_noise_pred, noise_pred = noise_pred.chunk(2) + # noise_pred = neg_noise_pred + true_cfg * (noise_pred - neg_noise_pred) + noise_pred = noise_pred + (1-mask)*(noise_pred - neg_noise_pred) * true_cfg + else: + neg_noise_pred, noise_pred = noise_pred.chunk(2) + + # perform CG + if i < max_steps: + opt_latents = latents.detach().clone() + with torch.enable_grad(): + opt_latents = opt_latents.detach().requires_grad_() + opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True) + # optimizer = torch.optim.Adam([opt_latents], lr=learning_rate) + + for _ in range(optimization_steps): + latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0] + if i < source_steps: + loss = (1000*torch.nn.functional.mse_loss(latents_p, source_latents, reduction='none')).mean() + else: + loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean() + + grad = torch.autograd.grad(loss, opt_latents)[0] + # grad = torch.clamp(grad, -0.5, 0.5) + opt_latents = opt_latents - learning_rate * grad + + latents = opt_latents.detach().clone() + + + # compute the previous noisy sample x_t -> x_t-1 + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + if output_type == "latent": + image = latents + + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return FluxPipelineOutput(images=image) + diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..77a338c9b8cd6339b4ddc7b394607d5d5414c587 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,9 @@ +spaces +diffusers==0.31.0 +gradio==5.6.0 +numpy==2.1.3 +Pillow==11.0.0 +torch==2.1.2 +torch_xla==2.5.1 +torchvision==0.16.2 +transformers==4.45.2 diff --git a/saved_results/20241126_053639/input.png b/saved_results/20241126_053639/input.png new file mode 100644 index 0000000000000000000000000000000000000000..24df90880d636cc8b7e61552fc1a03f282787640 Binary files /dev/null and b/saved_results/20241126_053639/input.png differ diff --git a/saved_results/20241126_053639/mask.png b/saved_results/20241126_053639/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..13e9d0b9698bad75929b566d43c8640db48e8973 Binary files /dev/null and b/saved_results/20241126_053639/mask.png differ diff --git a/saved_results/20241126_053639/output.png b/saved_results/20241126_053639/output.png new file mode 100644 index 0000000000000000000000000000000000000000..bdb4e11dcbe8f82001ef8ea9a0aed499f454072a --- /dev/null +++ b/saved_results/20241126_053639/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f1fdeb3a98da1b0cc536e4f97f4d36cfc912b9645225607402b87b7221047ef +size 1077405 diff --git a/saved_results/20241126_053639/parameters.json b/saved_results/20241126_053639/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..64f0ae49e8bcfad7666a4c8cde69b4339607f020 --- /dev/null +++ b/saved_results/20241126_053639/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Inpainting", + "prompt": "a dog", + "edit_prompt": "", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 30, + "learning_rate": 1, + "max_source_steps": 20, + "optimization_steps": 10, + "true_cfg": 2 +} \ No newline at end of file diff --git a/saved_results/20241126_055109/input.png b/saved_results/20241126_055109/input.png new file mode 100644 index 0000000000000000000000000000000000000000..24df90880d636cc8b7e61552fc1a03f282787640 Binary files /dev/null and b/saved_results/20241126_055109/input.png differ diff --git a/saved_results/20241126_055109/mask.png b/saved_results/20241126_055109/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..13e9d0b9698bad75929b566d43c8640db48e8973 Binary files /dev/null and b/saved_results/20241126_055109/mask.png differ diff --git a/saved_results/20241126_055109/output.png b/saved_results/20241126_055109/output.png new file mode 100644 index 0000000000000000000000000000000000000000..66f121daf37affe44f1f88d6430341671db74fd3 --- /dev/null +++ b/saved_results/20241126_055109/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b8111afa5b56049ddf13a1a35c0a8c3be4ea9ab777476c7669e1719b6a4343d1 +size 1057241 diff --git a/saved_results/20241126_055109/parameters.json b/saved_results/20241126_055109/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..64f0ae49e8bcfad7666a4c8cde69b4339607f020 --- /dev/null +++ b/saved_results/20241126_055109/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Inpainting", + "prompt": "a dog", + "edit_prompt": "", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 30, + "learning_rate": 1, + "max_source_steps": 20, + "optimization_steps": 10, + "true_cfg": 2 +} \ No newline at end of file diff --git a/saved_results/20241126_173140/input.png b/saved_results/20241126_173140/input.png new file mode 100644 index 0000000000000000000000000000000000000000..be95fe96bbaa270dd63caf011576ff05074f4184 Binary files /dev/null and b/saved_results/20241126_173140/input.png differ diff --git a/saved_results/20241126_173140/mask.png b/saved_results/20241126_173140/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..285fbe49fde92796ed5da1adf99abeb42b44c8fa Binary files /dev/null and b/saved_results/20241126_173140/mask.png differ diff --git a/saved_results/20241126_173140/output.png b/saved_results/20241126_173140/output.png new file mode 100644 index 0000000000000000000000000000000000000000..7e830e0842f38ddf6dfc81cd31567f8bbcc9a997 --- /dev/null +++ b/saved_results/20241126_173140/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c484065f2bb53cb427858a9137c4f5e2b32426609a9a1bb401883368f2a6f6da +size 1372203 diff --git a/saved_results/20241126_173140/parameters.json b/saved_results/20241126_173140/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..e8801087f410535dd147674475f993bea3da378c --- /dev/null +++ b/saved_results/20241126_173140/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Inpainting", + "prompt": "a cat with blue eyes", + "edit_prompt": "", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 20, + "learning_rate": 1, + "max_source_steps": 20, + "optimization_steps": 10, + "true_cfg": 2 +} \ No newline at end of file diff --git a/saved_results/20241126_181436/input.png b/saved_results/20241126_181436/input.png new file mode 100644 index 0000000000000000000000000000000000000000..f4a7c53b76f1a339575ef5bacd464967f23c7cbc --- /dev/null +++ b/saved_results/20241126_181436/input.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4e6a77c0cb907998fe78e28658c7f65c674f1be6bf8d6984279f2fdcbc30482e +size 4840733 diff --git a/saved_results/20241126_181436/mask.png b/saved_results/20241126_181436/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..9a662b5bc71b41b0a3092539d24e602c515e21c6 Binary files /dev/null and b/saved_results/20241126_181436/mask.png differ diff --git a/saved_results/20241126_181436/output.png b/saved_results/20241126_181436/output.png new file mode 100644 index 0000000000000000000000000000000000000000..fb3e3e2bc699195f3a37bee3a5304295347c8211 Binary files /dev/null and b/saved_results/20241126_181436/output.png differ diff --git a/saved_results/20241126_181436/parameters.json b/saved_results/20241126_181436/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..90d36587a8d074c691e2ef9bec9b10fe1046563d --- /dev/null +++ b/saved_results/20241126_181436/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Editing", + "prompt": " ", + "edit_prompt": "volcano eruption", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 20, + "learning_rate": 0.5, + "max_source_steps": 2, + "optimization_steps": 3, + "true_cfg": 4.5 +} \ No newline at end of file diff --git a/saved_results/20241126_181633/input.png b/saved_results/20241126_181633/input.png new file mode 100644 index 0000000000000000000000000000000000000000..f4a7c53b76f1a339575ef5bacd464967f23c7cbc --- /dev/null +++ b/saved_results/20241126_181633/input.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4e6a77c0cb907998fe78e28658c7f65c674f1be6bf8d6984279f2fdcbc30482e +size 4840733 diff --git a/saved_results/20241126_181633/mask.png b/saved_results/20241126_181633/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..9a662b5bc71b41b0a3092539d24e602c515e21c6 Binary files /dev/null and b/saved_results/20241126_181633/mask.png differ diff --git a/saved_results/20241126_181633/output.png b/saved_results/20241126_181633/output.png new file mode 100644 index 0000000000000000000000000000000000000000..64781a7558b29b4ef46730b89321728643341a23 Binary files /dev/null and b/saved_results/20241126_181633/output.png differ diff --git a/saved_results/20241126_181633/parameters.json b/saved_results/20241126_181633/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..90d36587a8d074c691e2ef9bec9b10fe1046563d --- /dev/null +++ b/saved_results/20241126_181633/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Editing", + "prompt": " ", + "edit_prompt": "volcano eruption", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 20, + "learning_rate": 0.5, + "max_source_steps": 2, + "optimization_steps": 3, + "true_cfg": 4.5 +} \ No newline at end of file diff --git a/saved_results/20241126_214810/input.png b/saved_results/20241126_214810/input.png new file mode 100644 index 0000000000000000000000000000000000000000..24df90880d636cc8b7e61552fc1a03f282787640 Binary files /dev/null and b/saved_results/20241126_214810/input.png differ diff --git a/saved_results/20241126_214810/mask.png b/saved_results/20241126_214810/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..cc704aedc87e982432e573fd958d711529907b6a Binary files /dev/null and b/saved_results/20241126_214810/mask.png differ diff --git a/saved_results/20241126_214810/output.png b/saved_results/20241126_214810/output.png new file mode 100644 index 0000000000000000000000000000000000000000..1338e85d4996a112ddfa0189704098364128697b --- /dev/null +++ b/saved_results/20241126_214810/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c89f9f31166f6418be1533d462e74aefadb2b4521dd8015640f1d9403673a6f8 +size 1085186 diff --git a/saved_results/20241126_214810/parameters.json b/saved_results/20241126_214810/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..bb40b1286014f00bfedd1ac54aca45e941736f1c --- /dev/null +++ b/saved_results/20241126_214810/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Editing", + "prompt": " ", + "edit_prompt": "a dog with flowers in the mouth", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 30, + "learning_rate": 1, + "max_source_steps": 5, + "optimization_steps": 3, + "true_cfg": 4.5 +} \ No newline at end of file diff --git a/saved_results/20241126_214908/input.png b/saved_results/20241126_214908/input.png new file mode 100644 index 0000000000000000000000000000000000000000..24df90880d636cc8b7e61552fc1a03f282787640 Binary files /dev/null and b/saved_results/20241126_214908/input.png differ diff --git a/saved_results/20241126_214908/mask.png b/saved_results/20241126_214908/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..cc704aedc87e982432e573fd958d711529907b6a Binary files /dev/null and b/saved_results/20241126_214908/mask.png differ diff --git a/saved_results/20241126_214908/output.png b/saved_results/20241126_214908/output.png new file mode 100644 index 0000000000000000000000000000000000000000..99934c9fd57a12e04d7f359acda6735ae1e60e3f --- /dev/null +++ b/saved_results/20241126_214908/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4e8b13890624af98097b57ca314f2af4ec98e73f04c26be10ec93466edf7cabf +size 1083367 diff --git a/saved_results/20241126_214908/parameters.json b/saved_results/20241126_214908/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..8af7aa996a1c3492ee30839d4483b0cd21cd55b5 --- /dev/null +++ b/saved_results/20241126_214908/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Editing", + "prompt": " ", + "edit_prompt": "a dog with flowers in the mouth", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 20, + "learning_rate": 1, + "max_source_steps": 5, + "optimization_steps": 3, + "true_cfg": 4.5 +} \ No newline at end of file diff --git a/saved_results/20241126_215043/input.png b/saved_results/20241126_215043/input.png new file mode 100644 index 0000000000000000000000000000000000000000..24df90880d636cc8b7e61552fc1a03f282787640 Binary files /dev/null and b/saved_results/20241126_215043/input.png differ diff --git a/saved_results/20241126_215043/mask.png b/saved_results/20241126_215043/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..cc704aedc87e982432e573fd958d711529907b6a Binary files /dev/null and b/saved_results/20241126_215043/mask.png differ diff --git a/saved_results/20241126_215043/output.png b/saved_results/20241126_215043/output.png new file mode 100644 index 0000000000000000000000000000000000000000..b555497eeae7eb2c888e5cb2c179dedc085782f8 --- /dev/null +++ b/saved_results/20241126_215043/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d29bd6e39a70b4a9273467af120c0c1a19ae4019ba975a6b88bdefc4e1620271 +size 1085121 diff --git a/saved_results/20241126_215043/parameters.json b/saved_results/20241126_215043/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..6a29fd516e67ae868894aa0b63e587e9d19f6ab6 --- /dev/null +++ b/saved_results/20241126_215043/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Editing", + "prompt": " ", + "edit_prompt": "a dog with flowers in the mouth", + "seed": 52, + "randomize_seed": false, + "num_inference_steps": 30, + "max_steps": 20, + "learning_rate": 1, + "max_source_steps": 5, + "optimization_steps": 3, + "true_cfg": 4.5 +} \ No newline at end of file diff --git a/saved_results/20241126_221300/input.png b/saved_results/20241126_221300/input.png new file mode 100644 index 0000000000000000000000000000000000000000..a9a0d7821c068f2200e906bf2983b9b048abb72f Binary files /dev/null and b/saved_results/20241126_221300/input.png differ diff --git a/saved_results/20241126_221300/mask.png b/saved_results/20241126_221300/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..fba17fb8723f9ba09017cb439af32bca69e6f7fa Binary files /dev/null and b/saved_results/20241126_221300/mask.png differ diff --git a/saved_results/20241126_221300/output.png b/saved_results/20241126_221300/output.png new file mode 100644 index 0000000000000000000000000000000000000000..a19d716c8b860f72243f9016a4b4166b0aa55969 --- /dev/null +++ b/saved_results/20241126_221300/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9b09790e41c4f7502684c6682c623029934c9a8774ed5b45ceba5c1be474638b +size 1392628 diff --git a/saved_results/20241126_221300/parameters.json b/saved_results/20241126_221300/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..2a820ae5f1798eb861bc35d9dc63796c9e3a136c --- /dev/null +++ b/saved_results/20241126_221300/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Inpainting", + "prompt": "A building with \"ASU\" written on it.", + "edit_prompt": "", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 30, + "learning_rate": 1, + "max_source_steps": 20, + "optimization_steps": 5, + "true_cfg": 2 +} \ No newline at end of file diff --git a/saved_results/20241126_222257/input.png b/saved_results/20241126_222257/input.png new file mode 100644 index 0000000000000000000000000000000000000000..bb63c2d883c8f7c23b357c224b8714cf4c00428e Binary files /dev/null and b/saved_results/20241126_222257/input.png differ diff --git a/saved_results/20241126_222257/mask.png b/saved_results/20241126_222257/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..7ccc5f5e61ddde1786d5b1291883e33237076896 Binary files /dev/null and b/saved_results/20241126_222257/mask.png differ diff --git a/saved_results/20241126_222257/output.png b/saved_results/20241126_222257/output.png new file mode 100644 index 0000000000000000000000000000000000000000..059f90cd3fe9b46a9fd457b46c62186e09f2e5e2 --- /dev/null +++ b/saved_results/20241126_222257/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:825b90e103c5eb976f47c58cd31cd502f0334714edd26675d76b9e7e1fcad7b9 +size 1007279 diff --git a/saved_results/20241126_222257/parameters.json b/saved_results/20241126_222257/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..aae5df0eb285dc280cc5210ce1787b9460690d0c --- /dev/null +++ b/saved_results/20241126_222257/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Inpainting", + "prompt": "A cute pig with big eyes", + "edit_prompt": "", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 19.8, + "learning_rate": 1, + "max_source_steps": 20, + "optimization_steps": 5, + "true_cfg": 2 +} \ No newline at end of file diff --git a/saved_results/20241126_222442/input.png b/saved_results/20241126_222442/input.png new file mode 100644 index 0000000000000000000000000000000000000000..bb63c2d883c8f7c23b357c224b8714cf4c00428e Binary files /dev/null and b/saved_results/20241126_222442/input.png differ diff --git a/saved_results/20241126_222442/mask.png b/saved_results/20241126_222442/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..7ccc5f5e61ddde1786d5b1291883e33237076896 Binary files /dev/null and b/saved_results/20241126_222442/mask.png differ diff --git a/saved_results/20241126_222442/output.png b/saved_results/20241126_222442/output.png new file mode 100644 index 0000000000000000000000000000000000000000..5e603e4aadbd5c2b4eb595befc23da3e65b36315 --- /dev/null +++ b/saved_results/20241126_222442/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f8850c5c54035ebb6d7ab27f91779c942936b6736292b2e488583b06610d6e4e +size 1000741 diff --git a/saved_results/20241126_222442/parameters.json b/saved_results/20241126_222442/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..541c6ed154aa64f9dc9ce0c7d2474d58dc1ae94c --- /dev/null +++ b/saved_results/20241126_222442/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Editing", + "prompt": "A cute rabbit with big eyes", + "edit_prompt": "A cute pig with big eyes", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 30, + "learning_rate": 0.4, + "max_source_steps": 5, + "optimization_steps": 5, + "true_cfg": 4.5 +} \ No newline at end of file diff --git a/saved_results/20241126_222522/input.png b/saved_results/20241126_222522/input.png new file mode 100644 index 0000000000000000000000000000000000000000..bb63c2d883c8f7c23b357c224b8714cf4c00428e Binary files /dev/null and b/saved_results/20241126_222522/input.png differ diff --git a/saved_results/20241126_222522/mask.png b/saved_results/20241126_222522/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..7ccc5f5e61ddde1786d5b1291883e33237076896 Binary files /dev/null and b/saved_results/20241126_222522/mask.png differ diff --git a/saved_results/20241126_222522/output.png b/saved_results/20241126_222522/output.png new file mode 100644 index 0000000000000000000000000000000000000000..cc0e7695c7c00bbc5a7f0ac36518eed1f5cbf104 --- /dev/null +++ b/saved_results/20241126_222522/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7eb826ec17b61f0dc186821984736eaa6db995b32b2754d4f442926862893c28 +size 1004960 diff --git a/saved_results/20241126_222522/parameters.json b/saved_results/20241126_222522/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..541c6ed154aa64f9dc9ce0c7d2474d58dc1ae94c --- /dev/null +++ b/saved_results/20241126_222522/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Editing", + "prompt": "A cute rabbit with big eyes", + "edit_prompt": "A cute pig with big eyes", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 30, + "learning_rate": 0.4, + "max_source_steps": 5, + "optimization_steps": 5, + "true_cfg": 4.5 +} \ No newline at end of file diff --git a/saved_results/20241126_223634/input.png b/saved_results/20241126_223634/input.png new file mode 100644 index 0000000000000000000000000000000000000000..a29a7898249ae277f1899bd48a283a6f09bdcec1 Binary files /dev/null and b/saved_results/20241126_223634/input.png differ diff --git a/saved_results/20241126_223634/mask.png b/saved_results/20241126_223634/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..ce8e75fad3c47e13f9bf2cfb68de2dedc9760025 Binary files /dev/null and b/saved_results/20241126_223634/mask.png differ diff --git a/saved_results/20241126_223634/output.png b/saved_results/20241126_223634/output.png new file mode 100644 index 0000000000000000000000000000000000000000..a169969549aca141d041a77d3f77b2d02eb931c4 --- /dev/null +++ b/saved_results/20241126_223634/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:49a55d834a56efe47f5c6a17d0f693af616eaa477132110f33b691692229551a +size 1146868 diff --git a/saved_results/20241126_223634/parameters.json b/saved_results/20241126_223634/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..e686d9ce3a1c16f784e61a03d4199f34d5f09a73 --- /dev/null +++ b/saved_results/20241126_223634/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Editing", + "prompt": "a cat", + "edit_prompt": "a tiger", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 30, + "learning_rate": 0.6, + "max_source_steps": 10, + "optimization_steps": 5, + "true_cfg": 4.5 +} \ No newline at end of file diff --git a/saved_results/20241126_223719/input.png b/saved_results/20241126_223719/input.png new file mode 100644 index 0000000000000000000000000000000000000000..a29a7898249ae277f1899bd48a283a6f09bdcec1 Binary files /dev/null and b/saved_results/20241126_223719/input.png differ diff --git a/saved_results/20241126_223719/mask.png b/saved_results/20241126_223719/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..ce8e75fad3c47e13f9bf2cfb68de2dedc9760025 Binary files /dev/null and b/saved_results/20241126_223719/mask.png differ diff --git a/saved_results/20241126_223719/output.png b/saved_results/20241126_223719/output.png new file mode 100644 index 0000000000000000000000000000000000000000..030a7e876d01c797f5513f12d095dfff9d82268e --- /dev/null +++ b/saved_results/20241126_223719/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f30135ee9cdf48f45dc82d8262d0fe4f9592c30f901ded2cac91ea89dfe234a +size 1118660 diff --git a/saved_results/20241126_223719/parameters.json b/saved_results/20241126_223719/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..e686d9ce3a1c16f784e61a03d4199f34d5f09a73 --- /dev/null +++ b/saved_results/20241126_223719/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Editing", + "prompt": "a cat", + "edit_prompt": "a tiger", + "seed": 0, + "randomize_seed": true, + "num_inference_steps": 30, + "max_steps": 30, + "learning_rate": 0.6, + "max_source_steps": 10, + "optimization_steps": 5, + "true_cfg": 4.5 +} \ No newline at end of file diff --git a/saved_results/20241127_025429/input.png b/saved_results/20241127_025429/input.png new file mode 100644 index 0000000000000000000000000000000000000000..a9a0d7821c068f2200e906bf2983b9b048abb72f Binary files /dev/null and b/saved_results/20241127_025429/input.png differ diff --git a/saved_results/20241127_025429/mask.png b/saved_results/20241127_025429/mask.png new file mode 100644 index 0000000000000000000000000000000000000000..fba17fb8723f9ba09017cb439af32bca69e6f7fa Binary files /dev/null and b/saved_results/20241127_025429/mask.png differ diff --git a/saved_results/20241127_025429/output.png b/saved_results/20241127_025429/output.png new file mode 100644 index 0000000000000000000000000000000000000000..627b30d98bfe384597887acc93ba62512d59499c --- /dev/null +++ b/saved_results/20241127_025429/output.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6a6c73b284eb402d622db24e0d16f9e9fb9f8b8517f184a589f007a37f1ef3cc +size 1396508 diff --git a/saved_results/20241127_025429/parameters.json b/saved_results/20241127_025429/parameters.json new file mode 100644 index 0000000000000000000000000000000000000000..8958ce0d8ca87e1a92438530a876df6efb928882 --- /dev/null +++ b/saved_results/20241127_025429/parameters.json @@ -0,0 +1,13 @@ +{ + "mode": "Inpainting", + "prompt": "A building with \"ASU\" written on it.", + "edit_prompt": "", + "seed": 52, + "randomize_seed": false, + "num_inference_steps": 30, + "max_steps": 30, + "learning_rate": 1, + "max_source_steps": 20, + "optimization_steps": 10, + "true_cfg": 2 +} \ No newline at end of file diff --git a/scheduling_flow_match_euler_discrete.py b/scheduling_flow_match_euler_discrete.py new file mode 100644 index 0000000000000000000000000000000000000000..9d415dfc5023f22d177302ecf723bc2e7c761000 --- /dev/null +++ b/scheduling_flow_match_euler_discrete.py @@ -0,0 +1,464 @@ +# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.utils import BaseOutput, logging +from diffusers.schedulers.scheduling_utils import SchedulerMixin + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput): + """ + Output class for the scheduler's `step` function output. + + Args: + prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): + Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the + denoising loop. + """ + + prev_sample: torch.FloatTensor + + +class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin): + """ + Euler scheduler. + + This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic + methods the library implements for all schedulers such as loading and saving. + + Args: + num_train_timesteps (`int`, defaults to 1000): + The number of diffusion steps to train the model. + timestep_spacing (`str`, defaults to `"linspace"`): + The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and + Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. + shift (`float`, defaults to 1.0): + The shift value for the timestep schedule. + """ + + _compatibles = [] + order = 1 + + @register_to_config + def __init__( + self, + num_train_timesteps: int = 1000, + shift: float = 1.0, + use_dynamic_shifting=False, + base_shift: Optional[float] = 0.5, + max_shift: Optional[float] = 1.15, + base_image_seq_len: Optional[int] = 256, + max_image_seq_len: Optional[int] = 4096, + ): + timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() + timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) + + sigmas = timesteps / num_train_timesteps + if not use_dynamic_shifting: + # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution + sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) + + self.timesteps = sigmas * num_train_timesteps + + self._step_index = None + self._begin_index = None + + self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication + self.sigma_min = self.sigmas[-1].item() + self.sigma_max = self.sigmas[0].item() + + @property + def step_index(self): + """ + The index counter for current timestep. It will increase 1 after each scheduler step. + """ + return self._step_index + + @property + def begin_index(self): + """ + The index for the first timestep. It should be set from pipeline with `set_begin_index` method. + """ + return self._begin_index + + # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index + def set_begin_index(self, begin_index: int = 0): + """ + Sets the begin index for the scheduler. This function should be run from pipeline before the inference. + + Args: + begin_index (`int`): + The begin index for the scheduler. + """ + self._begin_index = begin_index + + def scale_noise( + self, + sample: torch.FloatTensor, + timestep: Union[float, torch.FloatTensor], + noise: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + """ + Forward process in flow-matching + + Args: + sample (`torch.FloatTensor`): + The input sample. + timestep (`int`, *optional*): + The current timestep in the diffusion chain. + + Returns: + `torch.FloatTensor`: + A scaled input sample. + """ + # Make sure sigmas and timesteps have the same device and dtype as original_samples + sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype) + + if sample.device.type == "mps" and torch.is_floating_point(timestep): + # mps does not support float64 + schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32) + timestep = timestep.to(sample.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(sample.device) + timestep = timestep.to(sample.device) + + # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep] + elif self.step_index is not None: + # add_noise is called after first denoising step (for inpainting) + step_indices = [self.step_index] * timestep.shape[0] + else: + # add noise is called before first denoising step to create initial latent(img2img) + step_indices = [self.begin_index] * timestep.shape[0] + + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(sample.shape): + sigma = sigma.unsqueeze(-1) + + sample = sigma * noise + (1.0 - sigma) * sample + + return sample + + def _sigma_to_t(self, sigma): + return sigma * self.config.num_train_timesteps + + def time_shift(self, mu: float, sigma: float, t: torch.Tensor): + return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) + + def set_timesteps( + self, + num_inference_steps: int = None, + device: Union[str, torch.device] = None, + sigmas: Optional[List[float]] = None, + mu: Optional[float] = None, + ): + """ + Sets the discrete timesteps used for the diffusion chain (to be run before inference). + + Args: + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + """ + + if self.config.use_dynamic_shifting and mu is None: + raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`") + + if sigmas is None: + self.num_inference_steps = num_inference_steps + timesteps = np.linspace( + self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps + ) + + sigmas = timesteps / self.config.num_train_timesteps + + if self.config.use_dynamic_shifting: + sigmas = self.time_shift(mu, 1.0, sigmas) + else: + sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) + + sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) + timesteps = sigmas * self.config.num_train_timesteps + + self.timesteps = timesteps.to(device=device) + self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) + + self._step_index = None + self._begin_index = None + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + + indices = (schedule_timesteps == timestep).nonzero() + + # The sigma index that is taken for the **very** first `step` + # is always the second index (or the last index if there is only 1) + # This way we can ensure we don't accidentally skip a sigma in + # case we start in the middle of the denoising schedule (e.g. for image-to-image) + pos = 1 if len(indices) > 1 else 0 + + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step( + self, + model_output: torch.FloatTensor, + timestep: Union[float, torch.FloatTensor], + sample: torch.FloatTensor, + s_churn: float = 0.0, + s_tmin: float = 0.0, + s_tmax: float = float("inf"), + s_noise: float = 1.0, + generator: Optional[torch.Generator] = None, + return_dict: bool = True, + ) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: + """ + Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion + process from the learned model outputs (most often the predicted noise). + + Args: + model_output (`torch.FloatTensor`): + The direct output from learned diffusion model. + timestep (`float`): + The current discrete timestep in the diffusion chain. + sample (`torch.FloatTensor`): + A current instance of a sample created by the diffusion process. + s_churn (`float`): + s_tmin (`float`): + s_tmax (`float`): + s_noise (`float`, defaults to 1.0): + Scaling factor for noise added to the sample. + generator (`torch.Generator`, *optional*): + A random number generator. + return_dict (`bool`): + Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or + tuple. + + Returns: + [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: + If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is + returned, otherwise a tuple is returned where the first element is the sample tensor. + """ + + if ( + isinstance(timestep, int) + or isinstance(timestep, torch.IntTensor) + or isinstance(timestep, torch.LongTensor) + ): + raise ValueError( + ( + "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" + " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" + " one of the `scheduler.timesteps` as a timestep." + ), + ) + + if self.step_index is None: + self._init_step_index(timestep) + + # Upcast to avoid precision issues when computing prev_sample + sample = sample.to(torch.float32) + + sigma = self.sigmas[self.step_index] + sigma_next = self.sigmas[self.step_index + 1] + + prev_sample = sample + (sigma_next - sigma) * model_output + + # Cast sample back to model compatible dtype + prev_sample = prev_sample.to(model_output.dtype) + + # upon completion increase step index by one + self._step_index += 1 + + if not return_dict: + return (prev_sample,) + + return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) + + def step_no_update( + self, + model_output: torch.FloatTensor, + timestep: Union[float, torch.FloatTensor], + sample: torch.FloatTensor, + s_churn: float = 0.0, + s_tmin: float = 0.0, + s_tmax: float = float("inf"), + s_noise: float = 1.0, + generator: Optional[torch.Generator] = None, + return_dict: bool = True, + ) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: + """ + Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion + process from the learned model outputs (most often the predicted noise). + + Args: + model_output (`torch.FloatTensor`): + The direct output from learned diffusion model. + timestep (`float`): + The current discrete timestep in the diffusion chain. + sample (`torch.FloatTensor`): + A current instance of a sample created by the diffusion process. + s_churn (`float`): + s_tmin (`float`): + s_tmax (`float`): + s_noise (`float`, defaults to 1.0): + Scaling factor for noise added to the sample. + generator (`torch.Generator`, *optional*): + A random number generator. + return_dict (`bool`): + Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or + tuple. + + Returns: + [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: + If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is + returned, otherwise a tuple is returned where the first element is the sample tensor. + """ + + if ( + isinstance(timestep, int) + or isinstance(timestep, torch.IntTensor) + or isinstance(timestep, torch.LongTensor) + ): + raise ValueError( + ( + "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" + " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" + " one of the `scheduler.timesteps` as a timestep." + ), + ) + + if self.step_index is None: + self._init_step_index(timestep) + + # Upcast to avoid precision issues when computing prev_sample + sample = sample.to(torch.float32) + + sigma = self.sigmas[self.step_index] + sigma_next = self.sigmas[self.step_index + 1] + + prev_sample = sample + (sigma_next - sigma) * model_output + + # Cast sample back to model compatible dtype + prev_sample = prev_sample.to(model_output.dtype) + + # Note: we do not need to do this if we are just testing the model + # # upon completion increase step index by one + # self._step_index += 1 + + if not return_dict: + return (prev_sample,) + + return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) + + def step_final( + self, + model_output: torch.FloatTensor, + timestep: Union[float, torch.FloatTensor], + sample: torch.FloatTensor, + s_churn: float = 0.0, + s_tmin: float = 0.0, + s_tmax: float = float("inf"), + s_noise: float = 1.0, + generator: Optional[torch.Generator] = None, + return_dict: bool = True, + ) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: + """ + Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion + process from the learned model outputs (most often the predicted noise). + + Args: + model_output (`torch.FloatTensor`): + The direct output from learned diffusion model. + timestep (`float`): + The current discrete timestep in the diffusion chain. + sample (`torch.FloatTensor`): + A current instance of a sample created by the diffusion process. + s_churn (`float`): + s_tmin (`float`): + s_tmax (`float`): + s_noise (`float`, defaults to 1.0): + Scaling factor for noise added to the sample. + generator (`torch.Generator`, *optional*): + A random number generator. + return_dict (`bool`): + Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or + tuple. + + Returns: + [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: + If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is + returned, otherwise a tuple is returned where the first element is the sample tensor. + """ + + if ( + isinstance(timestep, int) + or isinstance(timestep, torch.IntTensor) + or isinstance(timestep, torch.LongTensor) + ): + raise ValueError( + ( + "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" + " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" + " one of the `scheduler.timesteps` as a timestep." + ), + ) + + if self.step_index is None: + self._init_step_index(timestep) + + # Upcast to avoid precision issues when computing prev_sample + sample = sample.to(torch.float32) + + sigma = self.sigmas[self.step_index] + sigma_next = self.sigmas[-1] + + prev_sample = sample + (sigma_next - sigma) * model_output + + # Cast sample back to model compatible dtype + prev_sample = prev_sample.to(model_output.dtype) + + # Note: we do not need to do this to estimate final image + # # upon completion increase step index by one + # self._step_index += 1 + + if not return_dict: + return (prev_sample,) + + return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) + + + def __len__(self): + return self.config.num_train_timesteps \ No newline at end of file