Spaces:
Running
Running
File size: 3,672 Bytes
2cc8a36 0a574ec 2cc8a36 0a574ec 2cc8a36 0a574ec 2cc8a36 0a574ec 2cc8a36 0a574ec 2cc8a36 0a574ec 2cc8a36 0a574ec 2cc8a36 0a574ec 2cc8a36 0a574ec 2cc8a36 0a574ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
'''
This script calls the model from openai api to predict the next few words.
'''
import os
os.system("pip install --upgrade pip")
from pprint import pprint
os.system("pip install git+https://github.com/openai/whisper.git")
import sys
print("Sys: ", sys.executable)
os.system("pip install openai")
import openai
import gradio as gr
import whisper
from transformers import pipeline
import torch
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import time
# PROMPT = """This is a tool for helping someone with memory issues remember the next word.
# The predictions follow a few rules:
# 1) The predictions are suggestions of ways to continue the transcript as if someone forgot what the next word was.
# 2) The predictions do not repeat themselves.
# 3) The predictions focus on suggesting nouns, adjectives, and verbs.
# 4) The predictions are related to the context in the transcript.
# EXAMPLES:
# Transcript: Tomorrow night we're going out to
# Prediction: The Movies, A Restaurant, A Baseball Game, The Theater, A Party for a friend
# Transcript: I would like to order a cheeseburger with a side of
# Prediction: Frnech fries, Milkshake, Apple slices, Side salad, Extra katsup
# Transcript: My friend Savanah is
# Prediction: An elecrical engineer, A marine biologist, A classical musician
# Transcript: I need to buy a birthday
# Prediction: Present, Gift, Cake, Card
# Transcript: """
# whisper model specification
model = whisper.load_model("tiny")
openai.api_key = os.environ["Openai_APIkey"]
def debug_inference(audio, prompt, model, temperature, state=""):
# load audio data
audio = whisper.load_audio(audio)
# ensure sample is in correct format for inference
audio = whisper.pad_or_trim(audio)
# generate a log-mel spetrogram of the audio data
mel = whisper.log_mel_spectrogram(audio).to(model.device)
_, probs = model.detect_language(mel)
# decode audio data
options = whisper.DecodingOptions(fp16 = False)
# transcribe speech to text
result = whisper.decode(model, mel, options)
print("result pre gp model from whisper: ", result, ".text ", result.text, "and the data type: ", type(result.text))
text = prompt + result.text + "\nPrediction: "
response = openai.Completion.create(
model=model,
prompt=text,
temperature=temperature,
max_tokens=8,
n=5)
infers = []
temp = []
infered=[]
for i in range(5):
print("print1 ", response['choices'][i]['text'])
temp.append(response['choices'][i]['text'])
print("print2: infers ", infers)
print("print3: Responses ", response)
print("Object type of response: ", type(response))
#infered = list(map(lambda x: x.split(',')[0], infers))
#print("Infered type is: ", type(infered))
infers = list(map(lambda x: x.replace("\n", ""), temp))
#infered = list(map(lambda x: x.split(','), infers))
return result.text, state, infers, text
# get audio from microphone
gr.Interface(
fn=debug_inference,
inputs=[gr.inputs.Audio(source="microphone", type="filepath"),
gr.inputs.Textbox(lines=15, placeholder="Enter a prompt here"),
gr.inputs.Dropdown(["text-ada-001", "text-davinci-002", "text-davinci-003", "gpt-3.5-turbo"], label="Model"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.8, step=0.1, label="Temperature"),
"state"
],
outputs=["textbox","state","textbox", "textbox"],
live=True).launch() |