gfgf / app.py
Ffftdtd5dtft's picture
Update app.py
182a3f4 verified
raw
history blame
9.43 kB
import os
import redis
import pickle
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, FluxPipeline, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
from transformers import pipeline as transformers_pipeline, TrainingArguments, Trainer
from audiocraft.models import MusicGen
import gradio as gr
from huggingface_hub import HfFolder
import multiprocessing
import io
import time
hf_token = os.getenv("HF_TOKEN")
redis_host = os.getenv("REDIS_HOST")
redis_port = int(os.getenv("REDIS_PORT", 6379))
redis_password = os.getenv("REDIS_PASSWORD")
HfFolder.save_token(hf_token)
def connect_to_redis():
while True:
try:
redis_client = redis.Redis(host=redis_host, port=redis_port, password=redis_password)
redis_client.ping()
return redis_client
except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError, BrokenPipeError) as e:
time.sleep(1)
def reconnect_if_needed(redis_client):
try:
redis_client.ping()
except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError, BrokenPipeError):
return connect_to_redis()
return redis_client
def load_object_from_redis(key):
redis_client = connect_to_redis()
redis_client = reconnect_if_needed(redis_client)
try:
obj_data = redis_client.get(key)
return pickle.loads(obj_data) if obj_data else None
except (pickle.PickleError, redis.exceptions.RedisError) as e:
return None
def save_object_to_redis(key, obj):
redis_client = connect_to_redis()
redis_client = reconnect_if_needed(redis_client)
try:
redis_client.set(key, pickle.dumps(obj))
except redis.exceptions.RedisError as e:
print(f"Failed to save object to Redis: {e}")
def get_model_or_download(model_id, redis_key, loader_func):
model = load_object_from_redis(redis_key)
if model:
return model
try:
model = loader_func(model_id, torch_dtype=torch.float16)
save_object_to_redis(redis_key, model)
except Exception as e:
return None
def generate_image(prompt):
redis_key = f"generated_image_{prompt}"
image = load_object_from_redis(redis_key)
if not image:
try:
image = text_to_image_pipeline(prompt).images[0]
save_object_to_redis(redis_key, image)
except Exception as e:
return None
return image
def edit_image_with_prompt(image, prompt, strength=0.75):
redis_key = f"edited_image_{prompt}_{strength}"
edited_image = load_object_from_redis(redis_key)
if not edited_image:
try:
edited_image = img2img_pipeline(prompt=prompt, init_image=image.convert("RGB"), strength=strength).images[0]
save_object_to_redis(redis_key, edited_image)
except Exception as e:
return None
return edited_image
def generate_song(prompt, duration=10):
redis_key = f"generated_song_{prompt}_{duration}"
song = load_object_from_redis(redis_key)
if not song:
try:
song = music_gen.generate(prompt, duration=duration)
save_object_to_redis(redis_key, song)
except Exception as e:
return None
return song
def generate_text(prompt):
redis_key = f"generated_text_{prompt}"
text = load_object_from_redis(redis_key)
if not text:
try:
# Reemplazar "bigcode/starcoder" con otro modelo de generación de texto
text = text_gen_pipeline([{"role": "user", "content": prompt}], max_new_tokens=256)[0]["generated_text"].strip()
save_object_to_redis(redis_key, text)
except Exception as e:
return None
return text
def generate_flux_image(prompt):
redis_key = f"generated_flux_image_{prompt}"
flux_image = load_object_from_redis(redis_key)
if not flux_image:
try:
flux_image = flux_pipeline(
prompt,
guidance_scale=0.0,
num_inference_steps=4,
max_sequence_length=256,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
save_object_to_redis(redis_key, flux_image)
except Exception as e:
return None
return flux_image
def generate_code(prompt):
redis_key = f"generated_code_{prompt}"
code = load_object_from_redis(redis_key)
if not code:
try:
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt").to("cuda")
outputs = starcoder_model.generate(inputs)
code = starcoder_tokenizer.decode(outputs[0])
save_object_to_redis(redis_key, code)
except Exception as e:
return None
return code
def generate_video(prompt):
redis_key = f"generated_video_{prompt}"
video = load_object_from_redis(redis_key)
if not video:
try:
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
video = export_to_video(pipe(prompt, num_inference_steps=25).frames)
save_object_to_redis(redis_key, video)
except Exception as e:
return None
return video
def test_model_meta_llama():
redis_key = "meta_llama_test_response"
response = load_object_from_redis(redis_key)
if not response:
try:
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"}
]
response = meta_llama_pipeline(messages, max_new_tokens=256)[0]["generated_text"].strip()
save_object_to_redis(redis_key, response)
except Exception as e:
return None
return response
def train_model(model, dataset, epochs, batch_size, learning_rate):
output_dir = io.BytesIO()
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
learning_rate=learning_rate,
)
trainer = Trainer(model=model, args=training_args, train_dataset=dataset)
try:
trainer.train()
save_object_to_redis("trained_model", model)
save_object_to_redis("training_results", output_dir.getvalue())
except Exception as e:
print(f"Failed to train model: {e}")
def run_task(task_queue):
while True:
task = task_queue.get()
if task is None:
break
func, args, kwargs = task
try:
func(*args, **kwargs)
except Exception as e:
print(f"Failed to run task: {e}")
task_queue = multiprocessing.Queue()
num_processes = multiprocessing.cpu_count()
processes = []
for _ in range(num_processes):
p = multiprocessing.Process(target=run_task, args=(task_queue,))
p.start()
processes.append(p)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
text_to_image_pipeline = get_model_or_download("stabilityai/stable-diffusion-2", "text_to_image_model", StableDiffusionPipeline.from_pretrained)
img2img_pipeline = get_model_or_download("CompVis/stable-diffusion-v1-4", "img2img_model", StableDiffusionImg2ImgPipeline.from_pretrained)
flux_pipeline = get_model_or_download("black-forest-labs/FLUX.1-schnell", "flux_model", FluxPipeline.from_pretrained)
text_gen_pipeline = transformers_pipeline("text-generation", model="google/flan-t5-xl", tokenizer="google/flan-t5-xl", device=device)
music_gen = load_object_from_redis("music_gen") or MusicGen.from_pretrained('melody')
meta_llama_pipeline = get_model_or_download("meta-llama/Meta-Llama-3.1-8B-Instruct", "meta_llama_model", transformers_pipeline)
gen_image_tab = gr.Interface(generate_image, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Image(type="pil"), title="Generate Image")
edit_image_tab = gr.Interface(edit_image_with_prompt, [gr.inputs.Image(type="pil", label="Image:"), gr.inputs.Textbox(label="Prompt:"), gr.inputs.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:")], gr.outputs.Image(type="pil"), title="Edit Image")
generate_song_tab = gr.Interface(generate_song, [gr.inputs.Textbox(label="Prompt:"), gr.inputs.Slider(5, 60, 10, step=1, label="Duration (s):")], gr.outputs.Audio(type="numpy"), title="Generate Songs")
generate_text_tab = gr.Interface(generate_text, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Textbox(label="Generated Text:"), title="Generate Text")
generate_flux_image_tab = gr.Interface(generate_flux_image, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Image(type="pil"), title="Generate FLUX Images")
model_meta_llama_test_tab = gr.Interface(test_model_meta_llama, gr.inputs.Textbox(label="Test Input:"), gr.outputs.Textbox(label="Model Output:"), title="Test Meta-Llama")
app = gr.TabbedInterface(
[gen_image_tab, edit_image_tab, generate_song_tab, generate_text_tab, generate_flux_image_tab, model_meta_llama_test_tab],
["Generate Image", "Edit Image", "Generate Song", "Generate Text", "Generate FLUX Image", "Test Meta-Llama"]
)
app.launch(share=True)
for _ in range(num_processes):
task_queue.put(None)
for p in processes:
p.join()