Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install torch==2.0.1 transformers==4.27.1 datasets==2.4.0 wget==3.2 huggingface-hub==0.14.1 beautifulsoup4==4.11.1 requests==2.28.1 matplotlib tqdm python-dotenv diffusers
|
2 |
+
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch.utils.data import DataLoader, Dataset
|
7 |
+
from torch.optim import AdamW
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import matplotlib.animation as animation
|
10 |
+
import time
|
11 |
+
import threading
|
12 |
+
from tqdm import tqdm
|
13 |
+
from transformers import AutoTokenizer, AutoModel, TrainingArguments, pipeline
|
14 |
+
from diffusers import DiffusionPipeline
|
15 |
+
from huggingface_hub import login, HfApi, Repository
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
|
18 |
+
# Cargar variables de entorno
|
19 |
+
load_dotenv()
|
20 |
+
|
21 |
+
class UnifiedModel(nn.Module):
|
22 |
+
def __init__(self, models):
|
23 |
+
super(UnifiedModel, self).__init__()
|
24 |
+
self.models = nn.ModuleList(models)
|
25 |
+
self.classifier = nn.Linear(sum([model.config.hidden_size for model in models if hasattr(model, 'config')]), 2)
|
26 |
+
|
27 |
+
def forward(self, inputs):
|
28 |
+
hidden_states = []
|
29 |
+
for model in self.models:
|
30 |
+
if isinstance(model, nn.Module):
|
31 |
+
outputs = model(inputs)
|
32 |
+
hidden_states.append(outputs.last_hidden_state[:, 0, :])
|
33 |
+
elif isinstance(model, DiffusionPipeline) or isinstance(model, pipeline):
|
34 |
+
outputs = model(inputs)
|
35 |
+
hidden_states.append(torch.tensor(outputs))
|
36 |
+
concatenated_hidden_states = torch.cat(hidden_states, dim=-1)
|
37 |
+
logits = self.classifier(concatenated_hidden_states)
|
38 |
+
return logits
|
39 |
+
|
40 |
+
|
41 |
+
class SyntheticDataset(Dataset):
|
42 |
+
def __init__(self, tokenizers, size=100):
|
43 |
+
self.tokenizers = tokenizers
|
44 |
+
self.size = size
|
45 |
+
self.data = self._generate_data()
|
46 |
+
|
47 |
+
def _generate_data(self):
|
48 |
+
data = []
|
49 |
+
for _ in range(self.size):
|
50 |
+
text = "This is a sample sentence for testing purposes."
|
51 |
+
label = torch.tensor(0) # Sample label
|
52 |
+
item = {"text": text, "label": label}
|
53 |
+
for name, tokenizer in self.tokenizers.items():
|
54 |
+
tokenized = tokenizer(text, padding="max_length", truncation=True, max_length=128)
|
55 |
+
item[f"input_ids_{name}"] = torch.tensor(tokenized["input_ids"])
|
56 |
+
item[f"attention_mask_{name}"] = torch.tensor(tokenized["attention_mask"])
|
57 |
+
data.append(item)
|
58 |
+
return data
|
59 |
+
|
60 |
+
def __len__(self):
|
61 |
+
return len(self.data)
|
62 |
+
|
63 |
+
def __getitem__(self, idx):
|
64 |
+
return self.data[idx]
|
65 |
+
|
66 |
+
|
67 |
+
def push_to_hub(local_dir, repo_name):
|
68 |
+
try:
|
69 |
+
repo_url = HfApi().create_repo(repo_name, exist_ok=True)
|
70 |
+
repo = Repository(local_dir, clone_from=repo_url)
|
71 |
+
|
72 |
+
if not os.path.exists(os.path.join(local_dir, ".git")):
|
73 |
+
os.system(f"cd {local_dir} && git init && git remote add origin {repo_url} && git pull origin main")
|
74 |
+
|
75 |
+
repo.git_add(auto_lfs_track=True)
|
76 |
+
repo.git_commit("Add model and tokenizer files")
|
77 |
+
|
78 |
+
json_files = ["config.json", "generation_config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer.model", "tokenizer_config.json"]
|
79 |
+
for json_file in json_files:
|
80 |
+
json_file_path = os.path.join(local_dir, json_file)
|
81 |
+
if os.path.exists(json_file_path):
|
82 |
+
repo.git_add(json_file_path)
|
83 |
+
|
84 |
+
repo.git_push()
|
85 |
+
print(f"Pushed model and tokenizer to {repo_url}")
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error pushing to Hugging Face Hub: {e}")
|
88 |
+
|
89 |
+
|
90 |
+
def main():
|
91 |
+
while True:
|
92 |
+
try:
|
93 |
+
os.system("git config --global credential.helper store")
|
94 |
+
login(token=os.getenv("HUGGINGFACE_TOKEN"), add_to_git_credential=True)
|
95 |
+
|
96 |
+
# Definir los modelos que se van a utilizar
|
97 |
+
models_to_train = [
|
98 |
+
"openai-community/gpt2-xl",
|
99 |
+
"google/gemma-2-9b-it",
|
100 |
+
"google/gemma-2-9b",
|
101 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
102 |
+
"meta-llama/Meta-Llama-3.1-8B",
|
103 |
+
"openbmb/MiniCPM-V-2_6",
|
104 |
+
"bigcode/starcoder",
|
105 |
+
"WizardLMTeam/WizardCoder-Python-34B-V1.0",
|
106 |
+
"Qwen/Qwen2-72B-Instruct",
|
107 |
+
"google/gemma-2-2b-it",
|
108 |
+
"facebook/bart-large-cnn",
|
109 |
+
"Falconsai/text_summarization",
|
110 |
+
"microsoft/speecht5_tts",
|
111 |
+
"Groq/Llama-3-Groq-70B-Tool-Use",
|
112 |
+
"Groq/Llama-3-Groq-8B-Tool-Use"
|
113 |
+
]
|
114 |
+
|
115 |
+
# Inicializar los pipelines
|
116 |
+
pipelines_to_unify = [
|
117 |
+
pipeline("text-to-audio", model="facebook/musicgen-melody"),
|
118 |
+
pipeline("text-to-audio", model="facebook/musicgen-large"),
|
119 |
+
pipeline("text-to-audio", model="facebook/musicgen-small"),
|
120 |
+
DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1"),
|
121 |
+
pipeline("automatic-speech-recognition", model="openai/whisper-small"),
|
122 |
+
DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev"),
|
123 |
+
DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1"),
|
124 |
+
DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell"),
|
125 |
+
pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-8B"),
|
126 |
+
pipeline("text-generation", model="openbmb/MiniCPM-V-2_6"),
|
127 |
+
pipeline("text-generation", model="bigcode/starcoder"),
|
128 |
+
pipeline("text-to-speech", model="microsoft/speecht5_tts"),
|
129 |
+
pipeline("text-generation", model="WizardLMTeam/WizardCoder-Python-34B-V1.0"),
|
130 |
+
pipeline("text-generation", model="Qwen/Qwen2-72B-Instruct"),
|
131 |
+
pipeline("text-generation", model="google/gemma-2-2b-it"),
|
132 |
+
pipeline("summarization", model="facebook/bart-large-cnn"),
|
133 |
+
pipeline("summarization", model="Falconsai/text_summarization"),
|
134 |
+
DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev"),
|
135 |
+
pipeline("text-to-audio", model="facebook/musicgen-small"),
|
136 |
+
pipeline("text-generation", model="Groq/Llama-3-Groq-70B-Tool-Use"),
|
137 |
+
pipeline("text-generation", model="Groq/Llama-3-Groq-8B-Tool-Use")
|
138 |
+
]
|
139 |
+
|
140 |
+
tokenizers = {}
|
141 |
+
models = []
|
142 |
+
for model_name in models_to_train:
|
143 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
144 |
+
|
145 |
+
if tokenizer.pad_token is None:
|
146 |
+
tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})
|
147 |
+
|
148 |
+
model = AutoModel.from_pretrained(model_name)
|
149 |
+
tokenizers[model_name] = tokenizer
|
150 |
+
models.append(model)
|
151 |
+
|
152 |
+
# Agregar pipelines como modelos
|
153 |
+
models.extend(pipelines_to_unify)
|
154 |
+
|
155 |
+
# Crear un dataset sint茅tico para entrenamiento y evaluaci贸n
|
156 |
+
synthetic_dataset = SyntheticDataset(tokenizers, size=100)
|
157 |
+
|
158 |
+
# Dividir el dataset en entrenamiento y evaluaci贸n
|
159 |
+
train_size = int(0.8 * len(synthetic_dataset))
|
160 |
+
val_size = len(synthetic_dataset) - train_size
|
161 |
+
train_dataset, val_dataset = torch.utils.data.random_split(synthetic_dataset, [train_size, val_size])
|
162 |
+
|
163 |
+
# Crear DataLoaders para entrenamiento y evaluaci贸n
|
164 |
+
train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)
|
165 |
+
eval_loader = DataLoader(val_dataset, batch_size=16)
|
166 |
+
|
167 |
+
# Unificar los modelos y pipelines en uno solo
|
168 |
+
unified_model = UnifiedModel(models)
|
169 |
+
unified_model.to(torch.device("cpu"))
|
170 |
+
|
171 |
+
# Mostrar la cantidad de par谩metros totales a entrenar
|
172 |
+
total_params = sum(p.numel() for p in unified_model.parameters())
|
173 |
+
print(f"Total parameters to train: {total_params}")
|
174 |
+
|
175 |
+
# Definir los argumentos de entrenamiento
|
176 |
+
training_args = TrainingArguments(
|
177 |
+
output_dir="outputs/unified_model",
|
178 |
+
evaluation_strategy="epoch",
|
179 |
+
learning_rate=9e-4,
|
180 |
+
per_device_train_batch_size=2,
|
181 |
+
per_device_eval_batch_size=16,
|
182 |
+
num_train_epochs=1, # Reduced epochs for quick training
|
183 |
+
weight_decay=0.01,
|
184 |
+
logging_steps=10, # More frequent logging for quicker feedback
|
185 |
+
optim="adamw_hf"
|
186 |
+
)
|
187 |
+
|
188 |
+
# Definir el optimizador
|
189 |
+
optimizer = AdamW(unified_model.parameters(), lr=training_args.learning_rate)
|
190 |
+
|
191 |
+
train_losses = []
|
192 |
+
eval_losses = []
|
193 |
+
|
194 |
+
def train(model, train_loader, eval_loader, args):
|
195 |
+
model.train()
|
196 |
+
epoch = 0
|
197 |
+
total_steps = args.num_train_epochs * len(train_loader)
|
198 |
+
progress_bar = tqdm(total=total_steps, desc="Training")
|
199 |
+
|
200 |
+
while epoch < args.num_train_epochs:
|
201 |
+
start_time = time.time()
|
202 |
+
for step, batch in enumerate(train_loader):
|
203 |
+
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in tokenizers.keys()]
|
204 |
+
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in tokenizers.keys()]
|
205 |
+
labels = batch["label"].to("cpu")
|
206 |
+
optimizer.zero_grad()
|
207 |
+
outputs = model(input_ids)
|
208 |
+
loss = nn.CrossEntropyLoss()(outputs, labels)
|
209 |
+
loss.backward()
|
210 |
+
optimizer.step()
|
211 |
+
progress_bar.update(1)
|
212 |
+
|
213 |
+
elapsed_time = time.time() - start_time
|
214 |
+
estimated_total_time = total_steps * (elapsed_time / (step + 1))
|
215 |
+
estimated_remaining_time = estimated_total_time - elapsed_time
|
216 |
+
|
217 |
+
if step % args.logging_steps == 0:
|
218 |
+
train_losses.append(loss.item())
|
219 |
+
print(f"Step {step}/{total_steps}, Loss: {loss.item()}, Estimated remaining time: {estimated_remaining_time:.2f} seconds")
|
220 |
+
|
221 |
+
epoch += 1
|
222 |
+
model.eval()
|
223 |
+
eval_loss = 0
|
224 |
+
with torch.no_grad():
|
225 |
+
for batch in eval_loader:
|
226 |
+
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in tokenizers.keys()]
|
227 |
+
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in tokenizers.keys()]
|
228 |
+
labels = batch["label"].to("cpu")
|
229 |
+
outputs = model(input_ids)
|
230 |
+
loss = nn.CrossEntropyLoss()(outputs, labels)
|
231 |
+
eval_loss += loss.item()
|
232 |
+
|
233 |
+
eval_loss /= len(eval_loader)
|
234 |
+
eval_losses.append(eval_loss)
|
235 |
+
print(f"Epoch {epoch}/{args.num_train_epochs}, Evaluation Loss: {eval_loss}")
|
236 |
+
|
237 |
+
train(unified_model, train_loader, eval_loader, training_args)
|
238 |
+
|
239 |
+
# Visualizar p茅rdidas durante el entrenamiento
|
240 |
+
fig, ax = plt.subplots()
|
241 |
+
ax.set_xlabel("Epochs")
|
242 |
+
ax.set_ylabel("Loss")
|
243 |
+
ax.legend()
|
244 |
+
|
245 |
+
def animate(i):
|
246 |
+
ax.clear()
|
247 |
+
ax.plot(train_losses[:i], label="Train Loss")
|
248 |
+
ax.plot(eval_losses[:i], label="Eval Loss")
|
249 |
+
ax.legend()
|
250 |
+
|
251 |
+
ani = animation.FuncAnimation(fig, animate, frames=len(train_losses), blit=False)
|
252 |
+
plt.show()
|
253 |
+
|
254 |
+
# Subir el modelo unificado a Hugging Face Hub
|
255 |
+
local_dir = "./outputs/unified_model"
|
256 |
+
push_to_hub(local_dir, repo_name="Ffftdtd5dtft/my_model")
|
257 |
+
|
258 |
+
break
|
259 |
+
except Exception as e:
|
260 |
+
print(f"Error: {e}")
|
261 |
+
time.sleep(2)
|
262 |
+
|
263 |
+
if __name__ == "__main__":
|
264 |
+
main()
|