Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
# Загружаем
|
5 |
sentiment_pipeline = pipeline("sentiment-analysis")
|
|
|
6 |
|
7 |
# Функция для анализа тональности текста
|
8 |
def analyze_sentiment(text):
|
9 |
result = sentiment_pipeline(text)[0]
|
10 |
return f"Label: {result['label']}, Confidence: {result['score']:.4f}"
|
11 |
|
12 |
-
#
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
"I love programming, it's so much fun!",
|
15 |
"This movie was terrible, I hated it.",
|
16 |
"The weather is nice today.",
|
@@ -18,16 +24,35 @@ examples = [
|
|
18 |
"Gradio is an amazing tool for building ML demos!"
|
19 |
]
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Запускаем интерфейс
|
33 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Загружаем модели для анализа тональности и суммаризации текста
|
5 |
sentiment_pipeline = pipeline("sentiment-analysis")
|
6 |
+
summarization_pipeline = pipeline("summarization")
|
7 |
|
8 |
# Функция для анализа тональности текста
|
9 |
def analyze_sentiment(text):
|
10 |
result = sentiment_pipeline(text)[0]
|
11 |
return f"Label: {result['label']}, Confidence: {result['score']:.4f}"
|
12 |
|
13 |
+
# Функция для суммаризации текста
|
14 |
+
def summarize_text(text):
|
15 |
+
result = summarization_pipeline(text, max_length=50, min_length=25, do_sample=False)
|
16 |
+
return result[0]['summary_text']
|
17 |
+
|
18 |
+
# Примеры текстов для анализа тональности
|
19 |
+
sentiment_examples = [
|
20 |
"I love programming, it's so much fun!",
|
21 |
"This movie was terrible, I hated it.",
|
22 |
"The weather is nice today.",
|
|
|
24 |
"Gradio is an amazing tool for building ML demos!"
|
25 |
]
|
26 |
|
27 |
+
# Примеры текстов для суммаризации
|
28 |
+
summarization_examples = [
|
29 |
+
"Gradio is a powerful tool for building machine learning demos. It allows developers to quickly create interactive interfaces for their models.",
|
30 |
+
"The weather today is sunny with a slight breeze. It's a perfect day to go outside and enjoy nature.",
|
31 |
+
"Artificial intelligence is transforming industries by automating tasks and providing insights from large datasets."
|
32 |
+
]
|
33 |
+
|
34 |
+
# Создаем интерфейс Gradio с вкладками
|
35 |
+
with gr.Blocks() as demo:
|
36 |
+
with gr.Tab("Sentiment Analysis"):
|
37 |
+
gr.Interface(
|
38 |
+
fn=analyze_sentiment,
|
39 |
+
inputs=gr.Textbox(lines=2, placeholder="Введите текст для анализа тональности..."),
|
40 |
+
outputs="text",
|
41 |
+
title="Анализ тональности текста",
|
42 |
+
description="Введите текст, чтобы определить его тональность.",
|
43 |
+
examples=sentiment_examples,
|
44 |
+
examples_per_page=5
|
45 |
+
)
|
46 |
+
with gr.Tab("Text Summarization"):
|
47 |
+
gr.Interface(
|
48 |
+
fn=summarize_text,
|
49 |
+
inputs=gr.Textbox(lines=5, placeholder="Введите текст для суммаризации..."),
|
50 |
+
outputs="text",
|
51 |
+
title="Суммаризация текста",
|
52 |
+
description="Введите текст, чтобы получить его краткое содержание.",
|
53 |
+
examples=summarization_examples,
|
54 |
+
examples_per_page=3
|
55 |
+
)
|
56 |
|
57 |
# Запускаем интерфейс
|
58 |
+
demo.launch()
|