import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange class LayerNorm(nn.Module): r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_first"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape, ) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class NormDownsample(nn.Module): def __init__(self,in_ch,out_ch,scale=0.5,use_norm=False): super(NormDownsample, self).__init__() self.use_norm=use_norm if self.use_norm: self.norm=LayerNorm(out_ch) self.prelu = nn.PReLU() self.down = nn.Sequential( nn.Conv2d(in_ch, out_ch,kernel_size=3,stride=1, padding=1, bias=False), nn.UpsamplingBilinear2d(scale_factor=scale)) def forward(self, x): x = self.down(x) x = self.prelu(x) if self.use_norm: x = self.norm(x) return x else: return x class NormUpsample(nn.Module): def __init__(self, in_ch,out_ch,scale=2,use_norm=False): super(NormUpsample, self).__init__() self.use_norm=use_norm if self.use_norm: self.norm=LayerNorm(out_ch) self.prelu = nn.PReLU() self.up_scale = nn.Sequential( nn.Conv2d(in_ch,out_ch,kernel_size=3,stride=1, padding=1, bias=False), nn.UpsamplingBilinear2d(scale_factor=scale)) self.up = nn.Conv2d(out_ch*2,out_ch,kernel_size=1,stride=1, padding=0, bias=False) def forward(self, x,y): x = self.up_scale(x) x = torch.cat([x, y],dim=1) x = self.up(x) x = self.prelu(x) if self.use_norm: return self.norm(x) else: return x