Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -45,15 +45,26 @@ from llama_index.core.node_parser.relational.base_element import (
|
|
45 |
from llama_index.core.schema import BaseNode, TextNode
|
46 |
|
47 |
|
|
|
48 |
api_token = os.getenv("HF_TOKEN")
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# default_persist_directory = './chroma_HF/'
|
52 |
-
list_llm = ["mistralai/Mistral-7B-Instruct-v0.3", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1",
|
53 |
-
"google/gemma-7b-it","google/gemma-2b-it",
|
54 |
-
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
55 |
-
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
|
56 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct",
|
57 |
"google/flan-t5-xxl"
|
58 |
]
|
59 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
@@ -96,7 +107,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
96 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.3":
|
97 |
llm = HuggingFaceEndpoint(
|
98 |
repo_id=llm_model,
|
99 |
-
|
100 |
temperature = temperature,
|
101 |
max_new_tokens = max_tokens,
|
102 |
top_k = top_k,
|
@@ -106,7 +117,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
106 |
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
107 |
llm = HuggingFaceEndpoint(
|
108 |
repo_id=llm_model,
|
109 |
-
|
110 |
temperature = temperature,
|
111 |
max_new_tokens = max_tokens,
|
112 |
top_k = top_k,
|
@@ -114,7 +125,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
114 |
elif llm_model == "microsoft/phi-2":
|
115 |
llm = HuggingFaceEndpoint(
|
116 |
repo_id=llm_model,
|
117 |
-
|
118 |
temperature = temperature,
|
119 |
max_new_tokens = max_tokens,
|
120 |
top_k = top_k,
|
@@ -124,7 +135,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
124 |
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
125 |
llm = HuggingFaceEndpoint(
|
126 |
repo_id=llm_model,
|
127 |
-
|
128 |
temperature = temperature,
|
129 |
max_new_tokens = 250,
|
130 |
top_k = top_k,
|
@@ -133,7 +144,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
133 |
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
134 |
llm = HuggingFaceEndpoint(
|
135 |
repo_id=llm_model,
|
136 |
-
|
137 |
temperature = temperature,
|
138 |
max_new_tokens = max_tokens,
|
139 |
top_k = top_k,
|
@@ -141,7 +152,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
141 |
else:
|
142 |
llm = HuggingFaceEndpoint(
|
143 |
repo_id=llm_model,
|
144 |
-
|
145 |
temperature = temperature,
|
146 |
max_new_tokens = max_tokens,
|
147 |
top_k = top_k,
|
@@ -235,11 +246,11 @@ def upload_file(file_obj):
|
|
235 |
|
236 |
# Initialize LlamaIndex parsing
|
237 |
def initialize_llama_index(file_obj):
|
238 |
-
documents = LlamaParse(result_type="markdown",api_key=
|
239 |
-
node_parser = MarkdownElementNodeParser(llm
|
240 |
nodes = node_parser.get_nodes_from_documents(documents)
|
241 |
base_nodes, objects = node_parser.get_nodes_and_objects(nodes)
|
242 |
-
index_with_obj = VectorStoreIndex(nodes=base_nodes+objects)
|
243 |
index_ret = index_with_obj.as_retriever(top_k=15)
|
244 |
recursive_query_engine = RetrieverQueryEngine.from_args(index_ret, node_postprocessors=[FlagEmbeddingReranker(
|
245 |
top_n=5,
|
@@ -268,12 +279,12 @@ def demo():
|
|
268 |
|
269 |
with gr.Tab("Step 2 - Process document"):
|
270 |
with gr.Row():
|
271 |
-
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value
|
272 |
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
273 |
with gr.Row():
|
274 |
-
slider_chunk_size = gr.Slider(minimum
|
275 |
with gr.Row():
|
276 |
-
slider_chunk_overlap = gr.Slider(minimum
|
277 |
with gr.Row():
|
278 |
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
279 |
with gr.Row():
|
@@ -281,17 +292,17 @@ def demo():
|
|
281 |
|
282 |
with gr.Tab("Step 3 - Initialize QA chain"):
|
283 |
with gr.Row():
|
284 |
-
llm_btn = gr.Radio(list_llm_simple,
|
285 |
-
label="LLM models", value
|
286 |
with gr.Accordion("Advanced options - LLM model", open=False):
|
287 |
with gr.Row():
|
288 |
-
slider_temperature = gr.Slider(minimum
|
289 |
with gr.Row():
|
290 |
-
slider_maxtokens = gr.Slider(minimum
|
291 |
with gr.Row():
|
292 |
-
slider_topk = gr.Slider(minimum
|
293 |
with gr.Row():
|
294 |
-
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
295 |
with gr.Row():
|
296 |
qachain_btn = gr.Button("Initialize Question Answering chain")
|
297 |
|
@@ -320,31 +331,31 @@ def demo():
|
|
320 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
321 |
|
322 |
# Preprocessing events
|
323 |
-
db_btn.click(initialize_database,
|
324 |
-
inputs=[document, slider_chunk_size, slider_chunk_overlap],
|
325 |
outputs=[vector_db, collection_name, db_progress])
|
326 |
-
qachain_btn.click(initialize_LLM,
|
327 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
328 |
-
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
329 |
-
inputs=None,
|
330 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
331 |
queue=False)
|
332 |
-
llama_index_btn.click(initialize_llama_index,
|
333 |
-
inputs=[document],
|
334 |
outputs=[llama_index_engine, llama_index_progress])
|
335 |
|
336 |
# Chatbot events
|
337 |
-
msg.submit(conversation,
|
338 |
-
inputs=[qa_chain, msg, chatbot],
|
339 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
340 |
queue=False)
|
341 |
-
submit_btn.click(conversation,
|
342 |
-
inputs=[qa_chain, msg, chatbot],
|
343 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
344 |
queue=False)
|
345 |
-
clear_btn.click(lambda:[None,"",0,"",0,"",0],
|
346 |
-
inputs=None,
|
347 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
348 |
queue=False)
|
349 |
demo.queue().launch(debug=True)
|
350 |
|
|
|
45 |
from llama_index.core.schema import BaseNode, TextNode
|
46 |
|
47 |
|
48 |
+
# Obtenha o token da variável de ambiente
|
49 |
api_token = os.getenv("HF_TOKEN")
|
50 |
+
|
51 |
+
# Verifique se o token foi obtido corretamente
|
52 |
+
if api_token is None:
|
53 |
+
raise ValueError("O token de API não foi encontrado. Verifique se a variável de ambiente HF_TOKEN está configurada corretamente.")
|
54 |
+
|
55 |
+
# Função para ofuscar o token
|
56 |
+
def obscure_token(token, num_visible=4):
|
57 |
+
return '*' * (len(token) - num_visible) + token[-num_visible:]
|
58 |
+
|
59 |
+
# Exibir o token de API ofuscado (apenas para debug; remova em produção)
|
60 |
+
print(f"Token de API: {obscure_token(api_token)}")
|
61 |
|
62 |
# default_persist_directory = './chroma_HF/'
|
63 |
+
list_llm = ["mistralai/Mistral-7B-Instruct-v0.3", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1",
|
64 |
+
"google/gemma-7b-it","google/gemma-2b-it",
|
65 |
+
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
66 |
+
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
|
67 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct",
|
68 |
"google/flan-t5-xxl"
|
69 |
]
|
70 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
|
|
107 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.3":
|
108 |
llm = HuggingFaceEndpoint(
|
109 |
repo_id=llm_model,
|
110 |
+
api_key=api_token,
|
111 |
temperature = temperature,
|
112 |
max_new_tokens = max_tokens,
|
113 |
top_k = top_k,
|
|
|
117 |
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
118 |
llm = HuggingFaceEndpoint(
|
119 |
repo_id=llm_model,
|
120 |
+
api_key=api_token,
|
121 |
temperature = temperature,
|
122 |
max_new_tokens = max_tokens,
|
123 |
top_k = top_k,
|
|
|
125 |
elif llm_model == "microsoft/phi-2":
|
126 |
llm = HuggingFaceEndpoint(
|
127 |
repo_id=llm_model,
|
128 |
+
api_key=api_token,
|
129 |
temperature = temperature,
|
130 |
max_new_tokens = max_tokens,
|
131 |
top_k = top_k,
|
|
|
135 |
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
136 |
llm = HuggingFaceEndpoint(
|
137 |
repo_id=llm_model,
|
138 |
+
api_key=api_token,
|
139 |
temperature = temperature,
|
140 |
max_new_tokens = 250,
|
141 |
top_k = top_k,
|
|
|
144 |
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
145 |
llm = HuggingFaceEndpoint(
|
146 |
repo_id=llm_model,
|
147 |
+
api_key=api_token,
|
148 |
temperature = temperature,
|
149 |
max_new_tokens = max_tokens,
|
150 |
top_k = top_k,
|
|
|
152 |
else:
|
153 |
llm = HuggingFaceEndpoint(
|
154 |
repo_id=llm_model,
|
155 |
+
api_key=api_token,
|
156 |
temperature = temperature,
|
157 |
max_new_tokens = max_tokens,
|
158 |
top_k = top_k,
|
|
|
246 |
|
247 |
# Initialize LlamaIndex parsing
|
248 |
def initialize_llama_index(file_obj):
|
249 |
+
documents = LlamaParse(result_type="markdown", api_key=api_token).load_data(file_obj[0].name)
|
250 |
+
node_parser = MarkdownElementNodeParser(llm=None, num_workers=8)
|
251 |
nodes = node_parser.get_nodes_from_documents(documents)
|
252 |
base_nodes, objects = node_parser.get_nodes_and_objects(nodes)
|
253 |
+
index_with_obj = VectorStoreIndex(nodes=base_nodes + objects)
|
254 |
index_ret = index_with_obj.as_retriever(top_k=15)
|
255 |
recursive_query_engine = RetrieverQueryEngine.from_args(index_ret, node_postprocessors=[FlagEmbeddingReranker(
|
256 |
top_n=5,
|
|
|
279 |
|
280 |
with gr.Tab("Step 2 - Process document"):
|
281 |
with gr.Row():
|
282 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index", info="Choose your vector database")
|
283 |
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
284 |
with gr.Row():
|
285 |
+
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
286 |
with gr.Row():
|
287 |
+
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
288 |
with gr.Row():
|
289 |
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
290 |
with gr.Row():
|
|
|
292 |
|
293 |
with gr.Tab("Step 3 - Initialize QA chain"):
|
294 |
with gr.Row():
|
295 |
+
llm_btn = gr.Radio(list_llm_simple,
|
296 |
+
label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
|
297 |
with gr.Accordion("Advanced options - LLM model", open=False):
|
298 |
with gr.Row():
|
299 |
+
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
300 |
with gr.Row():
|
301 |
+
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
302 |
with gr.Row():
|
303 |
+
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
304 |
with gr.Row():
|
305 |
+
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
|
306 |
with gr.Row():
|
307 |
qachain_btn = gr.Button("Initialize Question Answering chain")
|
308 |
|
|
|
331 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
332 |
|
333 |
# Preprocessing events
|
334 |
+
db_btn.click(initialize_database,
|
335 |
+
inputs=[document, slider_chunk_size, slider_chunk_overlap],
|
336 |
outputs=[vector_db, collection_name, db_progress])
|
337 |
+
qachain_btn.click(initialize_LLM,
|
338 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
339 |
+
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
340 |
+
inputs=None,
|
341 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
342 |
queue=False)
|
343 |
+
llama_index_btn.click(initialize_llama_index,
|
344 |
+
inputs=[document],
|
345 |
outputs=[llama_index_engine, llama_index_progress])
|
346 |
|
347 |
# Chatbot events
|
348 |
+
msg.submit(conversation,
|
349 |
+
inputs=[qa_chain, msg, chatbot],
|
350 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
351 |
queue=False)
|
352 |
+
submit_btn.click(conversation,
|
353 |
+
inputs=[qa_chain, msg, chatbot],
|
354 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
355 |
queue=False)
|
356 |
+
clear_btn.click(lambda:[None,"",0,"",0,"",0],
|
357 |
+
inputs=None,
|
358 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
359 |
queue=False)
|
360 |
demo.queue().launch(debug=True)
|
361 |
|