Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ from langchain_community.llms import HuggingFaceEndpoint
|
|
17 |
import torch
|
18 |
api_token = os.getenv("HF_TOKEN")
|
19 |
|
20 |
-
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
|
21 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
22 |
|
23 |
# Load PDF document and create doc splits
|
@@ -64,32 +64,19 @@ def create_db(splits, collection_name, db_type):
|
|
64 |
return vectordb
|
65 |
|
66 |
# Initialize langchain LLM chain
|
67 |
-
|
68 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
69 |
progress(0.1, desc="Initializing HF tokenizer...")
|
70 |
|
71 |
progress(0.5, desc="Initializing HF Hub...")
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
)
|
82 |
-
|
83 |
-
else:
|
84 |
-
|
85 |
-
llm = HuggingFaceEndpoint(
|
86 |
-
repo_id=llm_model,
|
87 |
-
huggingfacehub_api_token=api_token,
|
88 |
-
temperature=temperature,
|
89 |
-
max_new_tokens=max_tokens,
|
90 |
-
top_k=top_k,
|
91 |
-
)
|
92 |
-
|
93 |
progress(0.75, desc="Defining buffer memory...")
|
94 |
memory = ConversationBufferMemory(
|
95 |
memory_key="chat_history",
|
@@ -101,11 +88,12 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
101 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
102 |
llm,
|
103 |
retriever=retriever,
|
104 |
-
chain_type="stuff",
|
105 |
memory=memory,
|
106 |
return_source_documents=True,
|
107 |
verbose=False,
|
108 |
)
|
|
|
109 |
progress(0.9, desc="Done!")
|
110 |
return qa_chain
|
111 |
|
@@ -266,7 +254,7 @@ def demo():
|
|
266 |
db_btn.click(initialize_database,
|
267 |
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
|
268 |
outputs=[vector_db, collection_name, db_progress])
|
269 |
-
set_prompt_btn.click(lambda prompt:
|
270 |
inputs=prompt_input,
|
271 |
outputs=initial_prompt)
|
272 |
qachain_btn.click(initialize_LLM,
|
|
|
17 |
import torch
|
18 |
api_token = os.getenv("HF_TOKEN")
|
19 |
|
20 |
+
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
|
21 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
22 |
|
23 |
# Load PDF document and create doc splits
|
|
|
64 |
return vectordb
|
65 |
|
66 |
# Initialize langchain LLM chain
|
67 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
|
|
|
68 |
progress(0.1, desc="Initializing HF tokenizer...")
|
69 |
|
70 |
progress(0.5, desc="Initializing HF Hub...")
|
71 |
|
72 |
+
llm = HuggingFaceEndpoint(
|
73 |
+
repo_id=llm_model,
|
74 |
+
huggingfacehub_api_token=api_token,
|
75 |
+
temperature=temperature,
|
76 |
+
max_new_tokens=max_tokens,
|
77 |
+
top_k=top_k,
|
78 |
+
)
|
79 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
progress(0.75, desc="Defining buffer memory...")
|
81 |
memory = ConversationBufferMemory(
|
82 |
memory_key="chat_history",
|
|
|
88 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
89 |
llm,
|
90 |
retriever=retriever,
|
91 |
+
chain_type="stuff",
|
92 |
memory=memory,
|
93 |
return_source_documents=True,
|
94 |
verbose=False,
|
95 |
)
|
96 |
+
qa_chain({"question": initial_prompt}) # Initialize with the initial prompt
|
97 |
progress(0.9, desc="Done!")
|
98 |
return qa_chain
|
99 |
|
|
|
254 |
db_btn.click(initialize_database,
|
255 |
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
|
256 |
outputs=[vector_db, collection_name, db_progress])
|
257 |
+
set_prompt_btn.click(lambda prompt: prompt,
|
258 |
inputs=prompt_input,
|
259 |
outputs=initial_prompt)
|
260 |
qachain_btn.click(initialize_LLM,
|