Spaces:
Runtime error
Runtime error
Commit
·
108521b
1
Parent(s):
b1fb2b2
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This Python 3 environment comes with many helpful analytics libraries installed
|
2 |
+
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
|
3 |
+
# For example, here's several helpful packages to load
|
4 |
+
|
5 |
+
import numpy as np # linear algebra
|
6 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
7 |
+
|
8 |
+
# Input data files are available in the read-only "../input/" directory
|
9 |
+
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
|
10 |
+
|
11 |
+
import os
|
12 |
+
for dirname, _, filenames in os.walk('/kaggle/input'):
|
13 |
+
for filename in filenames:
|
14 |
+
print(os.path.join(dirname, filename))
|
15 |
+
|
16 |
+
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All"
|
17 |
+
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
|
18 |
+
|
19 |
+
#|default_exp app
|
20 |
+
|
21 |
+
#|export
|
22 |
+
#!pip install fastbook
|
23 |
+
import fastbook
|
24 |
+
from fastbook import *
|
25 |
+
#!pip install fastai
|
26 |
+
from fastai.vision.widgets import *
|
27 |
+
#!pip install gradio
|
28 |
+
import gradio as gr
|
29 |
+
|
30 |
+
import IPython
|
31 |
+
from IPython.display import display
|
32 |
+
from PIL import Image
|
33 |
+
|
34 |
+
import pathlib
|
35 |
+
temp = pathlib.PosixPath
|
36 |
+
pathlib.PosixPath = pathlib.WindowsPath
|
37 |
+
|
38 |
+
def search_images(term, max_images=50):
|
39 |
+
print(f"Searching for '{term}'")
|
40 |
+
return search_images_ddg(term, max_images)
|
41 |
+
|
42 |
+
learn = load_learner('model.pkl')
|
43 |
+
|
44 |
+
breeds = ('Labrador Retrievers','German Shepherds','Golden Retrievers','French Bulldogs','Bulldogs','Beagles','Poodles','Rottweilers','Chihuahua')
|
45 |
+
|
46 |
+
def classify_image(img):
|
47 |
+
pred,idx,probs = learn.predict(img)
|
48 |
+
#return dict(zip(breeds, map(float,probs)))
|
49 |
+
return "This is " + pred
|
50 |
+
|
51 |
+
image = gr.components.Image()
|
52 |
+
label = gr.components.Label()
|
53 |
+
|
54 |
+
examples = ['dog.jpg','labrador.jpeg','dunno.jpg']
|
55 |
+
|
56 |
+
for x in examples:
|
57 |
+
Image.open(x)
|
58 |
+
|
59 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
60 |
+
intf.launch(inline=False,share = True)
|