|
import { pipeline, env } from "@xenova/transformers"; |
|
import init, { Model } from "./phi/m.js"; |
|
import URI from "urijs" |
|
|
|
|
|
|
|
export async function tryCache(cache, ...names) { |
|
for (let name of names) { |
|
try { |
|
console.log(name) |
|
let result = await cache.match(name); |
|
if (result) return result; |
|
} catch (e) { |
|
continue; |
|
} |
|
} |
|
return undefined; |
|
} |
|
|
|
async function read_stream(url, response) { |
|
const reader = response.body.getReader(); |
|
const contentLength = +response.headers.get('Content-Length'); |
|
let receivedLength = 0; |
|
let chunks = []; |
|
let uri = new URI(url) |
|
|
|
while(true) { |
|
const {done, value} = await reader.read(); |
|
if (done) { |
|
break; |
|
} |
|
chunks.push(value); |
|
receivedLength += value.length; |
|
let percent = (receivedLength / contentLength) * 100 |
|
self.postMessage({ status: "progress", file: uri.filename(), progress: percent }); |
|
} |
|
|
|
let chunksAll = new Uint8Array(receivedLength); |
|
let position = 0; |
|
for(let chunk of chunks) { |
|
chunksAll.set(chunk, position); |
|
position += chunk.length; |
|
} |
|
return chunksAll |
|
} |
|
|
|
async function fetchArrayBuffer(url) { |
|
let cache = await caches.open('transformers-cache'); |
|
|
|
const response = await tryCache(cache, url); |
|
if (response != undefined) { |
|
console.log(url) |
|
let res = await read_stream(url, response) |
|
cache.put(url, new Response(res, { |
|
headers: response.headers |
|
})); |
|
return new Uint8Array(res); |
|
} |
|
else { |
|
const response = await fetch(url); |
|
let res = await read_stream(url, response) |
|
cache.put(url, new Response(res, { |
|
headers: response.headers, |
|
})); |
|
return new Uint8Array(res); |
|
} |
|
|
|
|
|
} |
|
|
|
class Phi { |
|
static instance = {}; |
|
|
|
static async getInstance(weightsURL, modelID, tokenizerURL, quantized) { |
|
|
|
if (!this.instance[modelID]) { |
|
await init(); |
|
|
|
self.postMessage({ status: "loading", message: "Loading Model" }); |
|
|
|
const [weightsArrayU8, tokenizerArrayU8] = await Promise.all([ |
|
fetchArrayBuffer(weightsURL), |
|
fetchArrayBuffer(tokenizerURL), |
|
]); |
|
|
|
self.postMessage({ status: "init_model" }); |
|
|
|
this.instance[modelID] = new Model( |
|
weightsArrayU8, |
|
tokenizerArrayU8, |
|
quantized |
|
); |
|
self.postMessage({ status: "ready", model: "phi-1_5" }); |
|
} |
|
return this.instance[modelID]; |
|
} |
|
} |
|
|
|
export class FlanPipeline { |
|
static curr_model = ""; |
|
static instance = null; |
|
|
|
static async getInstance(progress_callback = null, model, task) { |
|
if (this.instance === null) { |
|
this.instance = pipeline(task, model, { progress_callback }); |
|
this.curr_model = model; |
|
} else { |
|
if (this.curr_model != model) { |
|
this.instance = pipeline(task, model, { progress_callback }); |
|
this.curr_model = model; |
|
} |
|
} |
|
return this.instance; |
|
} |
|
} |
|
|
|
let controller = null; |
|
let phi_model = null; |
|
|
|
|
|
self.addEventListener("message", async (event) => { |
|
if (event.data.command != "abort") { |
|
if (event.data.is_phi) { |
|
controller = new AbortController(); |
|
generate_phi(event.data); |
|
} |
|
else { |
|
let pipe = await FlanPipeline.getInstance( |
|
(x) => { |
|
self.postMessage(x); |
|
}, |
|
event.data.model, |
|
event.data.task |
|
); |
|
|
|
let output = await pipe(event.data.text, { |
|
max_new_tokens: event.data.max_new_tokens, |
|
temperature: event.data.temperature, |
|
callback_function: (x) => { |
|
self.postMessage({ |
|
status: "update", |
|
output: pipe.tokenizer.decode(x[0].output_token_ids, { skip_special_tokens: true }), |
|
id_now: event.data.id_now, |
|
}); |
|
}, |
|
}); |
|
|
|
|
|
self.postMessage({ |
|
status: "complete", |
|
output: output, |
|
searchID: event.data.searchID, |
|
id_now: event.data.id_now, |
|
}); |
|
} |
|
} |
|
else { |
|
if (controller != null) |
|
controller.abort(); |
|
} |
|
}); |
|
|
|
|
|
|
|
async function generate_phi(data) { |
|
const tokenizerURL = "https://huggingface.co/microsoft/phi-1_5/raw/main/tokenizer.json"; |
|
const weightsURL = "https://huggingface.co/lmz/candle-quantized-phi/resolve/main/model-q4k.gguf"; |
|
let prompt = data.text |
|
let maxSeqLen = data.max_new_tokens |
|
let temp = data.temperature |
|
let modelID = 0; |
|
let quantized = true; |
|
let top_p = 1; |
|
let repeatPenalty = 1.1; |
|
let seed = 299792458; |
|
|
|
self.postMessage({ status: "initiate", file: "tokenizer.json", name: "phi-1_5" }); |
|
|
|
try { |
|
const model = await Phi.getInstance( |
|
weightsURL, |
|
modelID, |
|
tokenizerURL, |
|
quantized |
|
); |
|
|
|
const firstToken = model.init_with_prompt( |
|
prompt, |
|
temp, |
|
top_p, |
|
repeatPenalty, |
|
64, |
|
BigInt(seed) |
|
); |
|
const seq_len = 2048; |
|
|
|
let sentence = firstToken; |
|
let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1; |
|
let startTime = performance.now(); |
|
let tokensCount = 0; |
|
|
|
while (tokensCount < maxTokens) { |
|
await new Promise(async (resolve) => { |
|
if (controller && controller.signal.aborted) { |
|
self.postMessage({ |
|
status: "aborted", |
|
message: "Aborted", |
|
output: sentence, |
|
searchID: data.searchID, |
|
id_now: data.id_now, |
|
}); |
|
return; |
|
} |
|
const token = await model.next_token(); |
|
if (token === "<|endoftext|>") { |
|
self.postMessage({ |
|
status: "complete", |
|
output: sentence, |
|
searchID: data.searchID, |
|
id_now: data.id_now, |
|
}); |
|
return; |
|
} |
|
const tokensSec = |
|
((tokensCount + 1) / (performance.now() - startTime)) * 1000; |
|
|
|
sentence += token; |
|
self.postMessage({ |
|
status: "update", |
|
message: "Generating token", |
|
token: token, |
|
output: sentence, |
|
totalTime: performance.now() - startTime, |
|
tokensSec, |
|
prompt: prompt, |
|
id_now: data.id_now, |
|
}); |
|
setTimeout(resolve, 0); |
|
}); |
|
tokensCount++; |
|
} |
|
self.postMessage({ |
|
status: "complete", |
|
output: sentence, |
|
searchID: data.searchID, |
|
id_now: data.id_now, |
|
}); |
|
} catch (e) { |
|
console.log(e) |
|
self.postMessage({ error: e }); |
|
} |
|
} |