Spaces:
Runtime error
Runtime error
File size: 2,688 Bytes
a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 8e6e3de a9b8948 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import gradio as gr
from gradio_client import Client
client = Client("multimodalart/FLUX.1-merged")
def infer(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, api_name):
result = client.predict(
prompt=prompt,
seed=seed,
randomize_seed=True,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
api_name="/infer"
)
return result
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
#DiffusionLab Beta
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Create", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=999999,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2024,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=1.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
run_button.click(
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result]
)
demo.queue().launch() |