File size: 5,364 Bytes
b364214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import streamlit as st
import pandas as pd
from langchain.agents import create_csv_agent
from langchain.llms import OpenAI
import time
from streamlit_option_menu import option_menu

# Set Streamlit page configuration
st.set_page_config(page_title='CSV Processing', 
                   page_icon=":memo:", 
                   layout='wide', 
                   initial_sidebar_state='collapsed')

# Set CSS properties for HTML components
st.markdown("""
<style>
body {
    color: #fff;
    background-color: #4f8bf9;
}
h1, h2 {
    color: #ffdd00;
}
</style>
    """, unsafe_allow_html=True)

hide_style='''
    <style>
    #MainMenu {visibility:hidden;}
    footer {visibility:hidden;}
    .css-hi6a2p {padding-top: 0rem;}
    head {visibility:hidden;}
    </style>
'''
st.markdown("""
<h1 style='text-align: center; color: #ffdd00;'>XLS Office Documents Analysis with ChatGPT4 NLP Model</h1>
    """, unsafe_allow_html=True)
#st.title('XLS Office Documents Analysis with ChatGPT4 NLP Model')
# 1. as sidebar menu
with st.sidebar:
    selected = option_menu("Main Menu", ["Home", 'Help'], 
        icons=['house', 'gear'], menu_icon="cast", default_index=0)
    selected

if selected=="Help":
   # st.title("Help")
    # Import required libraries
    import streamlit as st

    # Set Streamlit page configuration
    #st.set_page_config(page_title='Help - XLS Office Documents Analysis with ChatGPT4 NLP Model', 
                      # page_icon=":memo:", 
                      # layout='wide', 
                      # initial_sidebar_state='collapsed')

    # Set CSS properties for HTML components
    st.markdown("""
    <style>
    body {
        color: #fff;
        background-color: #4f8bf9;
    }
    h1, h2 {
        color: #ffdd00;
    }
    </style>
        """, unsafe_allow_html=True)

    # Use HTML in markdown to center align the title
   # st.markdown("""
   # <h1 style='text-align: center; color: #ffdd00;'>Help Document for XLS Office Documents Analysis with ChatGPT4 NLP Model</h1>
      #  """, unsafe_allow_html=True)

    # Display authorship details
    st.markdown("""
    ## Developed by Falah.G.Salieh
    * AI Developer
    * Specialized in Natural Language Processing
    """, unsafe_allow_html=True)

    # Display help content
    st.markdown("""
    ## Getting Started

    This project aims to ...

    Here's how to use this app:

    1. Step 1: ...
    2. Step 2: ...
    3. Step 3: ...

    Please note that ...

    ### Uploading Your XLS File

    To upload your XLS file, ...

    ### Using the ChatGPT-4 NLP Model

    To use the ChatGPT-4 NLP model, ...

    ### Understanding the Results

    When you receive the results, ...

    ### Troubleshooting

    If you encounter any problems, ...

    ## Contact

    If you have any questions, feel free to ...
    """, unsafe_allow_html=True)


#-----------------
if selected=="Home":
    #st.title("home")

    def load_data(file):
        df = pd.read_excel(file, engine='openpyxl')
        df.to_csv('data.csv', index=False)  # Convert XLS to CSV
        return 'data.csv'

    def initialize_agent(file, openai_api_key):
        agent = create_csv_agent(OpenAI(temperature=0, openai_api_key=openai_api_key), file, verbose=True)
        return agent

    uploaded_file = st.file_uploader("Upload XLS", type=['xlsx'])
    st.markdown(hide_style, unsafe_allow_html=True)

    openai_api_key = st.sidebar.text_input('OpenAI API Key', type="password")

    # Pre-defined question examples
    question_examples = [
        "how many rows are there?",
        "how many people are female?",
        "how many people have stayed more than 3 years in the city?",
        "how many people have stayed more than 3 years in the city and are female?",
        "Are there more males or females?",
        "What are the column names?",
        "What is the average age?",
        "Which country appears the most and how many times does it appear?",
        "What is the ratio of males to females?"
        # Add more examples as needed
    ]

    # Dropdown select box for question examples
    selected_example = st.selectbox('Choose a question example:', question_examples)

    # Pre-populate the question field with the selected example
    question = st.text_input('Enter your question:', value=selected_example)

    if not openai_api_key or not openai_api_key.startswith('sk-'):
        st.warning('Please enter your OpenAI API key!', icon='⚠️')
    else:
        if uploaded_file is not None:
            # Create a progress bar
            #progress_bar = st.progress(0)
            #progress_bar.progress(25)  # Start the progress at 25%
            
            csv_file = load_data(uploaded_file)  # Now the uploaded file is an XLS file
            #progress_bar.progress(50)  # Update the progress to 50%
            
            agent = initialize_agent(csv_file, openai_api_key)
            #progress_bar.progress(100)  # Complete the progress bar
            
            if question:
                response = agent.run(question)
                with st.spinner('Wait for it...'):
                    time.sleep(5)
                st.success('Done!')
                #st.markdown(f'**Response:** {response}')
                st.markdown(f'<div style="color: red; font-size: 24px; text-align: center;">The Answer is:{response}</div>',unsafe_allow_html=True)