File size: 3,458 Bytes
01c9143 896ca03 01c9143 a15da10 01c9143 896ca03 01c9143 964e8c0 01c9143 964e8c0 a294f5a 01c9143 896ca03 01c9143 6b092bc e258b52 149f317 18fe3c3 6b092bc 01c9143 9a2eb41 01c9143 c548dde d08693f c548dde 01c9143 2c2556c 01c9143 964e8c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import os
import gradio as gr
import requests
import base64
from io import BytesIO
from PIL import Image
count = 0
def image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="JPEG", quality=90)
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def base64_to_image(base64_str):
return Image.open(BytesIO(base64.b64decode(base64_str + '=' * (-len(base64_str) % 4))))
def search_face(file):
global count
url = os.environ.get("SERVER_URL")
try:
image = Image.open(file)
image_base64 = image_to_base64(image)
r = requests.post(url=url, headers={"X-RapidAPI-Key": os.environ.get("API_KEY")}, json={"image": image_base64})
except:
raise gr.Error("Please select image file!")
status_code = r.status_code
if status_code == 301:
gr.Info("Too many faces in the photo.")
elif status_code == 302:
gr.Info("Face is not clear enough.")
elif status_code == 303:
gr.Info("No matches found.")
elif status_code == 304:
gr.Info("No face in the photo.")
elif status_code == 305:
gr.Info("Search blocked for privacy issue.")
elif status_code == 401:
gr.Info("Invalid image format.")
elif status_code == 402:
gr.Info("Wrong request.")
elif status_code == 403:
gr.Info("Requests all used in your token.")
elif status_code == 404:
gr.Info("Timeout, try again.")
if status_code > 300:
return [], count
try:
res = r.json().get('img_array')
out_array = []
for item in res:
out_array.append((base64_to_image(item["image"]), item["url"] + "*********"))
count += 1
return out_array, count
except:
raise gr.Error("Try again.")
with gr.Blocks() as demo:
gr.Markdown(
"""
# Search Your Face Online For Free
## For more detailed information, please check on our website.<br/>
## [FaceOnLive: On-premises ID Verification, Biometric Authentication Solution Provider](https://faceonlive.com)
<br>
"""
)
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(type='filepath', height=480)
gr.Text("(Optional) Premium Token via the link below.")
gr.HTML("<a href='https://faceonlive.pocketsflow.com/checkout?productId=676c15b1971244a587ca07cb' target='_blank'>Get Premium Token: Perform Deep Search & Full URLs</a>")
search_face_button = gr.Button("Search Face")
with gr.Column(scale=2):
output = gr.Gallery(label="Found Images", columns=[4], object_fit="contain", height="auto")
countwg = gr.Number(label="Count")
gr.Examples(['examples/1.jpg', 'examples/2.jpg'], inputs=image, cache_examples=True, cache_mode='lazy', fn=search_face, outputs=[output, countwg])
search_face_button.click(search_face, inputs=image, outputs=[output, countwg], api_name=False)
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FFaceOnLive%2FFace-Search-Online"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FFaceOnLive%2FFace-Search-Online&labelColor=%23ff8a65&countColor=%2337d67a&style=flat&labelStyle=upper" /></a>')
demo.queue(api_open=False, default_concurrency_limit=4).launch(server_name="0.0.0.0", server_port=7860, show_api=False) |