Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc.. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import os | |
| import shutil | |
| import subprocess | |
| import sys | |
| import tempfile | |
| import unittest | |
| from typing import List | |
| from accelerate.utils import write_basic_config | |
| from diffusers import DiffusionPipeline, UNet2DConditionModel | |
| logging.basicConfig(level=logging.DEBUG) | |
| logger = logging.getLogger() | |
| # These utils relate to ensuring the right error message is received when running scripts | |
| class SubprocessCallException(Exception): | |
| pass | |
| def run_command(command: List[str], return_stdout=False): | |
| """ | |
| Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture | |
| if an error occurred while running `command` | |
| """ | |
| try: | |
| output = subprocess.check_output(command, stderr=subprocess.STDOUT) | |
| if return_stdout: | |
| if hasattr(output, "decode"): | |
| output = output.decode("utf-8") | |
| return output | |
| except subprocess.CalledProcessError as e: | |
| raise SubprocessCallException( | |
| f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}" | |
| ) from e | |
| stream_handler = logging.StreamHandler(sys.stdout) | |
| logger.addHandler(stream_handler) | |
| class ExamplesTestsAccelerate(unittest.TestCase): | |
| def setUpClass(cls): | |
| super().setUpClass() | |
| cls._tmpdir = tempfile.mkdtemp() | |
| cls.configPath = os.path.join(cls._tmpdir, "default_config.yml") | |
| write_basic_config(save_location=cls.configPath) | |
| cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath] | |
| def tearDownClass(cls): | |
| super().tearDownClass() | |
| shutil.rmtree(cls._tmpdir) | |
| def test_train_unconditional(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/unconditional_image_generation/train_unconditional.py | |
| --dataset_name hf-internal-testing/dummy_image_class_data | |
| --model_config_name_or_path diffusers/ddpm_dummy | |
| --resolution 64 | |
| --output_dir {tmpdir} | |
| --train_batch_size 2 | |
| --num_epochs 1 | |
| --gradient_accumulation_steps 1 | |
| --ddpm_num_inference_steps 2 | |
| --learning_rate 1e-3 | |
| --lr_warmup_steps 5 | |
| """.split() | |
| run_command(self._launch_args + test_args, return_stdout=True) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin"))) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
| def test_textual_inversion(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/textual_inversion/textual_inversion.py | |
| --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
| --train_data_dir docs/source/en/imgs | |
| --learnable_property object | |
| --placeholder_token <cat-toy> | |
| --initializer_token a | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "learned_embeds.bin"))) | |
| def test_dreambooth(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/dreambooth/train_dreambooth.py | |
| --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
| --instance_data_dir docs/source/en/imgs | |
| --instance_prompt photo | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin"))) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
| def test_dreambooth_checkpointing(self): | |
| instance_prompt = "photo" | |
| pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Run training script with checkpointing | |
| # max_train_steps == 5, checkpointing_steps == 2 | |
| # Should create checkpoints at steps 2, 4 | |
| initial_run_args = f""" | |
| examples/dreambooth/train_dreambooth.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --instance_data_dir docs/source/en/imgs | |
| --instance_prompt {instance_prompt} | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 5 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| # check can run the original fully trained output pipeline | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(instance_prompt, num_inference_steps=2) | |
| # check checkpoint directories exist | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | |
| # check can run an intermediate checkpoint | |
| unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") | |
| pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) | |
| pipe(instance_prompt, num_inference_steps=2) | |
| # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
| shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
| # Run training script for 7 total steps resuming from checkpoint 4 | |
| resume_run_args = f""" | |
| examples/dreambooth/train_dreambooth.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --instance_data_dir docs/source/en/imgs | |
| --instance_prompt {instance_prompt} | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 7 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --resume_from_checkpoint=checkpoint-4 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| # check can run new fully trained pipeline | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(instance_prompt, num_inference_steps=2) | |
| # check old checkpoints do not exist | |
| self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | |
| # check new checkpoints exist | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6"))) | |
| def test_text_to_image(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin"))) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
| def test_text_to_image_checkpointing(self): | |
| pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
| prompt = "a prompt" | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Run training script with checkpointing | |
| # max_train_steps == 5, checkpointing_steps == 2 | |
| # Should create checkpoints at steps 2, 4 | |
| initial_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 5 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=2) | |
| # check checkpoint directories exist | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | |
| # check can run an intermediate checkpoint | |
| unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") | |
| pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) | |
| pipe(prompt, num_inference_steps=2) | |
| # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
| shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
| # Run training script for 7 total steps resuming from checkpoint 4 | |
| resume_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 7 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --resume_from_checkpoint=checkpoint-4 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| # check can run new fully trained pipeline | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=2) | |
| # check old checkpoints do not exist | |
| self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | |
| # check new checkpoints exist | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6"))) | |
| def test_text_to_image_checkpointing_use_ema(self): | |
| pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
| prompt = "a prompt" | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Run training script with checkpointing | |
| # max_train_steps == 5, checkpointing_steps == 2 | |
| # Should create checkpoints at steps 2, 4 | |
| initial_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 5 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --use_ema | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=2) | |
| # check checkpoint directories exist | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | |
| # check can run an intermediate checkpoint | |
| unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") | |
| pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) | |
| pipe(prompt, num_inference_steps=2) | |
| # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
| shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
| # Run training script for 7 total steps resuming from checkpoint 4 | |
| resume_run_args = f""" | |
| examples/text_to_image/train_text_to_image.py | |
| --pretrained_model_name_or_path {pretrained_model_name_or_path} | |
| --dataset_name hf-internal-testing/dummy_image_text_data | |
| --resolution 64 | |
| --center_crop | |
| --random_flip | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 7 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --resume_from_checkpoint=checkpoint-4 | |
| --use_ema | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| # check can run new fully trained pipeline | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) | |
| pipe(prompt, num_inference_steps=2) | |
| # check old checkpoints do not exist | |
| self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | |
| # check new checkpoints exist | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6"))) | |