Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel | |
| from diffusers.utils import slow, torch_device | |
| from diffusers.utils.testing_utils import require_torch_gpu, skip_mps | |
| from ...pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS | |
| from ...test_pipelines_common import PipelineTesterMixin | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| class DanceDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = DanceDiffusionPipeline | |
| params = UNCONDITIONAL_AUDIO_GENERATION_PARAMS | |
| required_optional_params = PipelineTesterMixin.required_optional_params - { | |
| "callback", | |
| "latents", | |
| "callback_steps", | |
| "output_type", | |
| "num_images_per_prompt", | |
| } | |
| batch_params = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS | |
| test_attention_slicing = False | |
| test_cpu_offload = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet1DModel( | |
| block_out_channels=(32, 32, 64), | |
| extra_in_channels=16, | |
| sample_size=512, | |
| sample_rate=16_000, | |
| in_channels=2, | |
| out_channels=2, | |
| flip_sin_to_cos=True, | |
| use_timestep_embedding=False, | |
| time_embedding_type="fourier", | |
| mid_block_type="UNetMidBlock1D", | |
| down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), | |
| up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), | |
| ) | |
| scheduler = IPNDMScheduler() | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "batch_size": 1, | |
| "generator": generator, | |
| "num_inference_steps": 4, | |
| } | |
| return inputs | |
| def test_dance_diffusion(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = DanceDiffusionPipeline(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = pipe(**inputs) | |
| audio = output.audios | |
| audio_slice = audio[0, -3:, -3:] | |
| assert audio.shape == (1, 2, components["unet"].sample_size) | |
| expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000]) | |
| assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_save_load_local(self): | |
| return super().test_save_load_local() | |
| def test_dict_tuple_outputs_equivalent(self): | |
| return super().test_dict_tuple_outputs_equivalent() | |
| def test_save_load_optional_components(self): | |
| return super().test_save_load_optional_components() | |
| def test_attention_slicing_forward_pass(self): | |
| return super().test_attention_slicing_forward_pass() | |
| class PipelineIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_dance_diffusion(self): | |
| device = torch_device | |
| pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k") | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.manual_seed(0) | |
| output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096) | |
| audio = output.audios | |
| audio_slice = audio[0, -3:, -3:] | |
| assert audio.shape == (1, 2, pipe.unet.sample_size) | |
| expected_slice = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020]) | |
| assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_dance_diffusion_fp16(self): | |
| device = torch_device | |
| pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k", torch_dtype=torch.float16) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.manual_seed(0) | |
| output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096) | |
| audio = output.audios | |
| audio_slice = audio[0, -3:, -3:] | |
| assert audio.shape == (1, 2, pipe.unet.sample_size) | |
| expected_slice = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341]) | |
| assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 | |