Fabrice-TIERCELIN commited on
Commit
0cc374b
·
verified ·
1 Parent(s): d0ab808

Application creation

Browse files
Files changed (1) hide show
  1. app.py +250 -0
app.py ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import (
2
+ ControlNetModel,
3
+ DiffusionPipeline,
4
+ StableDiffusionControlNetPipeline,
5
+ )
6
+ import gradio as gr
7
+ import numpy as np
8
+ import os
9
+ import time
10
+ import math
11
+ import random
12
+ import imageio
13
+ from PIL import (Image, ImageFilter)
14
+ import torch
15
+
16
+ max_64_bit_int = 2**63 - 1
17
+
18
+ device = "cuda" if torch.cuda.is_available() else "cpu"
19
+ controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_ip2p", torch_dtype = torch.float32)
20
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
21
+ "runwayml/stable-diffusion-v1-5", safety_checker = None, controlnet = controlnet, torch_dtype = torch.float32
22
+ )
23
+ pipe = pipe.to(device)
24
+
25
+ def check(
26
+ source_img,
27
+ prompt,
28
+ negative_prompt,
29
+ denoising_steps,
30
+ num_inference_steps,
31
+ guidance_scale,
32
+ randomize_seed,
33
+ seed,
34
+ progress = gr.Progress()):
35
+ if source_img is None:
36
+ raise gr.Error("Please provide an image.")
37
+
38
+ if prompt is None or prompt == "":
39
+ raise gr.Error("Please provide a prompt input.")
40
+
41
+ def pix2pix(
42
+ source_img,
43
+ prompt,
44
+ negative_prompt,
45
+ denoising_steps,
46
+ num_inference_steps,
47
+ guidance_scale,
48
+ randomize_seed,
49
+ seed,
50
+ progress = gr.Progress()):
51
+ check(
52
+ source_img,
53
+ prompt,
54
+ negative_prompt,
55
+ denoising_steps,
56
+ num_inference_steps,
57
+ guidance_scale,
58
+ randomize_seed,
59
+ seed
60
+ )
61
+ start = time.time()
62
+ progress(0, desc = "Preparing data...")
63
+
64
+ if negative_prompt is None:
65
+ negative_prompt = ""
66
+
67
+ if denoising_steps is None:
68
+ denoising_steps = 0
69
+
70
+ if num_inference_steps is None:
71
+ num_inference_steps = 20
72
+
73
+ if guidance_scale is None:
74
+ guidance_scale = 5
75
+
76
+ if randomize_seed:
77
+ seed = random.randint(0, max_64_bit_int)
78
+
79
+ random.seed(seed)
80
+ #pipe = pipe.manual_seed(seed)
81
+
82
+ try:
83
+ imageio.imwrite("data.png", source_img)
84
+ except:
85
+ raise gr.Error("Can't read input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")
86
+
87
+ # Input image
88
+ try:
89
+ input_image = Image.open("data.png").convert("RGB")
90
+ except:
91
+ raise gr.Error("Can't open input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")
92
+
93
+ output_height, output_width, dummy_channel = np.array(input_image).shape
94
+ mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "white")
95
+
96
+ limitation = "";
97
+
98
+ # Limited to 1 million pixels
99
+ if 1024 * 1024 < output_width * output_height:
100
+ factor = ((1024 * 1024) / (output_width * output_height))**0.5
101
+ output_width = math.floor(output_width * factor)
102
+ output_height = math.floor(output_height * factor)
103
+
104
+ limitation = " Due to technical limitation, the image have been downscaled.";
105
+
106
+ # Width and height must be multiple of 8
107
+ output_width = output_width - (output_width % 8)
108
+ output_height = output_height - (output_height % 8)
109
+ progress(None, desc = "Processing...")
110
+
111
+ output_image = pipe(
112
+ seeds=[seed],
113
+ width = output_width,
114
+ height = output_height,
115
+ prompt = prompt,
116
+ negative_prompt = negative_prompt,
117
+ image = input_image,
118
+ mask_image = mask_image,
119
+ num_inference_steps = num_inference_steps,
120
+ guidance_scale = guidance_scale,
121
+ denoising_steps = denoising_steps,
122
+ show_progress_bar = True
123
+ ).images[0]
124
+
125
+ end = time.time()
126
+ secondes = int(end - start)
127
+ minutes = secondes // 60
128
+ secondes = secondes - (minutes * 60)
129
+ hours = minutes // 60
130
+ minutes = minutes - (hours * 60)
131
+ return [
132
+ output_image,
133
+ "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec." + limitation
134
+ ]
135
+
136
+ with gr.Blocks() as interface:
137
+ gr.Markdown(
138
+ """
139
+ <p style="text-align: center;"><b><big><big><big>Instruct Pix2Pix demo</big></big></big></b></p>
140
+ <p style="text-align: center;">Modifies your image using a textual instruction, up to 1 million pixels, freely, without account, without watermark, without installation, which can be downloaded</p>
141
+ <br/>
142
+ <br/>
143
+ 🚀 Powered by <i>SD 1.5</i> and <i>ControlNet</i>
144
+ <br/>
145
+ <ul>
146
+ <li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li>
147
+ <li>To <b>upscale</b> your image, I recommend to use <i>Ilaria Upscaler</i>,</li>
148
+ <li>To <b>slightly change</b> your image, I recommend to use <i>Image-to-Image SDXL</i>,</li>
149
+ <li>To change <b>one detail</b> on your image, I recommend to use <i>Inpaint SDXL</i>,</li>
150
+ <li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li>
151
+ <li>To enlarge the <b>viewpoint</b> of your image, I recommend to use <i>Uncrop</i>,</li>
152
+ <li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li>
153
+ </ul>
154
+ <br/>
155
+ 🐌 Slow process... ~1 hour. If this space does not work or you want a faster run, use <i>Instruct Pix2Pix</i> available on terrapretapermaculture's <i>ControlNet-v1-1</i> space (last tab) or on <i>Dezgo</i> site.<br>You can duplicate this space on a free account, it works on CPU.<br/>
156
+ <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Instruct-Pix2Pix?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
157
+ <br/>
158
+ ⚖️ You can use, modify and share the generated images but not for commercial uses.
159
+ """
160
+ )
161
+ with gr.Column():
162
+ source_img = gr.Image(label = "Your image", sources = ["upload"], type = "numpy")
163
+ prompt = gr.Textbox(label = 'Prompt', info = "Instruct what to change in the image", placeholder = 'Order the AI what to change in the image')
164
+ with gr.Accordion("Advanced options", open = False):
165
+ negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the image', value = 'Watermark')
166
+ denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 0, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
167
+ num_inference_steps = gr.Slider(minimum = 10, maximum = 25, value = 20, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
168
+ guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 5, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
169
+ randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
170
+ seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
171
+
172
+ submit = gr.Button("Modify", variant = "primary")
173
+
174
+ modified_image = gr.Image(label = "Modified image")
175
+ information = gr.Label(label = "Information")
176
+
177
+ submit.click(check, inputs = [
178
+ source_img,
179
+ prompt,
180
+ negative_prompt,
181
+ denoising_steps,
182
+ num_inference_steps,
183
+ guidance_scale,
184
+ randomize_seed,
185
+ seed
186
+ ], outputs = [], queue = False, show_progress = False).success(pix2pix, inputs = [
187
+ source_img,
188
+ prompt,
189
+ negative_prompt,
190
+ denoising_steps,
191
+ num_inference_steps,
192
+ guidance_scale,
193
+ randomize_seed,
194
+ seed
195
+ ], outputs = [
196
+ modified_image,
197
+ information
198
+ ], scroll_to_output = True)
199
+
200
+ gr.Examples(
201
+ inputs = [
202
+ source_img,
203
+ prompt,
204
+ negative_prompt,
205
+ denoising_steps,
206
+ num_inference_steps,
207
+ guidance_scale,
208
+ randomize_seed,
209
+ seed
210
+ ],
211
+ outputs = [
212
+ modified_image,
213
+ information
214
+ ],
215
+ examples = [
216
+ [
217
+ "Example1.webp",
218
+ "What if it's snowing?",
219
+ "Watermark",
220
+ 1,
221
+ 20,
222
+ 5,
223
+ True,
224
+ 42
225
+ ],
226
+ [
227
+ "Example2.png",
228
+ "What if this woman had brown hair?",
229
+ "Watermark",
230
+ 1,
231
+ 20,
232
+ 5,
233
+ True,
234
+ 42
235
+ ],
236
+ [
237
+ "Example3.jpeg",
238
+ "Replace the house by a windmill",
239
+ "Watermark",
240
+ 1,
241
+ 20,
242
+ 5,
243
+ True,
244
+ 42
245
+ ],
246
+ ],
247
+ cache_examples = False,
248
+ )
249
+
250
+ interface.queue().launch()