GenStereo / app.py
FQiao's picture
Update app.py
24be5a8 verified
raw
history blame
8.58 kB
import os
from os.path import basename, splitext, join
import tempfile
import gradio as gr
import numpy as np
from PIL import Image
import torch
import cv2
from torchvision.transforms.functional import to_tensor, to_pil_image
from torch import Tensor
from genstereo import GenStereo, AdaptiveFusionLayer
import ssl
from huggingface_hub import hf_hub_download
import spaces
from extern.DAM2.depth_anything_v2.dpt import DepthAnythingV2
ssl._create_default_https_context = ssl._create_unverified_context
IMAGE_SIZE = 512
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
CHECKPOINT_NAME = 'genstereo'
def download_models():
models = [
{
'repo': 'stabilityai/sd-vae-ft-mse',
'sub': None,
'dst': 'checkpoints/sd-vae-ft-mse',
'files': ['config.json', 'diffusion_pytorch_model.safetensors'],
'token': None
},
{
'repo': 'lambdalabs/sd-image-variations-diffusers',
'sub': 'image_encoder',
'dst': 'checkpoints',
'files': ['config.json', 'pytorch_model.bin'],
'token': None
},
{
'repo': 'FQiao/GenStereo',
'sub': None,
'dst': 'checkpoints/genstereo',
'files': ['config.json', 'denoising_unet.pth', 'fusion_layer.pth', 'pose_guider.pth', 'reference_unet.pth'],
'token': None
},
{
'repo': 'depth-anything/Depth-Anything-V2-Large',
'sub': None,
'dst': 'checkpoints',
'files': [f'depth_anything_v2_vitl.pth'],
'token': None
}
]
for model in models:
for file in model['files']:
hf_hub_download(
repo_id=model['repo'],
subfolder=model['sub'],
filename=file,
local_dir=model['dst'],
token=model['token']
)
# Setup.
download_models()
# DepthAnythingV2
def get_dam2_model():
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder = 'vitl'
encoder_size_map = {'vits': 'Small', 'vitb': 'Base', 'vitl': 'Large'}
if encoder not in encoder_size_map:
raise ValueError(f"Unsupported encoder: {encoder}. Supported: {list(encoder_size_map.keys())}")
dam2 = DepthAnythingV2(**model_configs[encoder])
dam2_checkpoint = f'checkpoints/depth_anything_v2_{encoder}.pth'
dam2.load_state_dict(torch.load(dam2_checkpoint, map_location='cpu'))
dam2 = dam2.to(DEVICE).eval()
return dam2
# GenStereo
def get_genstereo_model():
genwarp_cfg = dict(
pretrained_model_path='checkpoints',
checkpoint_name=CHECKPOINT_NAME,
half_precision_weights=True
)
genstereo = GenStereo(cfg=genwarp_cfg, device=DEVICE)
return genstereo
# Adaptive Fusion
def get_fusion_model():
fusion_model = AdaptiveFusionLayer()
fusion_checkpoint = join('checkpoints', CHECKPOINT_NAME, 'fusion_layer.pth')
fusion_model.load_state_dict(torch.load(fusion_checkpoint, map_location='cpu'))
fusion_model = fusion_model.to(DEVICE).eval()
return fusion_model
# Crop the image to the shorter side.
def crop(img: Image) -> Image:
W, H = img.size
if W < H:
left, right = 0, W
top, bottom = np.ceil((H - W) / 2.), np.floor((H - W) / 2.) + W
else:
left, right = np.ceil((W - H) / 2.), np.floor((W - H) / 2.) + H
top, bottom = 0, H
return img.crop((left, top, right, bottom))
# Gradio app
with tempfile.TemporaryDirectory() as tmpdir:
with gr.Blocks(
title='StereoGen Demo',
css='img {display: inline;}'
) as demo:
# Internal states.
src_image = gr.State()
src_depth = gr.State()
def normalize_disp(disp):
return (disp - disp.min()) / (disp.max() - disp.min())
# Callbacks
@spaces.GPU()
def cb_mde(image_file: str):
if not image_file:
# Return None if no image is provided (e.g., when file is cleared).
return None, None, None, None
image = crop(Image.open(image_file).convert('RGB')) # Load image using PIL
image = image.resize((IMAGE_SIZE, IMAGE_SIZE))
image_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
dam2 = get_dam2_model()
depth_dam2 = dam2.infer_image(image_bgr)
depth = torch.tensor(depth_dam2).unsqueeze(0).unsqueeze(0).float()
depth_image = cv2.applyColorMap((normalize_disp(depth_dam2) * 255).astype(np.uint8), cv2.COLORMAP_JET)
return image, depth_image, image, depth
@spaces.GPU()
def cb_generate(image, depth: Tensor, scale_factor):
norm_disp = normalize_disp(depth.cuda())
disp = norm_disp * scale_factor / 100 * IMAGE_SIZE
genstereo = get_genstereo_model()
fusion_model = get_fusion_model()
renders = genstereo(
src_image=image,
src_disparity=disp,
ratio=None,
)
warped = (renders['warped'] + 1) / 2
synthesized = renders['synthesized']
mask = renders['mask']
fusion_image = fusion_model(synthesized.float(), warped.float(), mask.float())
warped_pil = to_pil_image(warped[0])
fusion_pil = to_pil_image(fusion_image[0])
return warped_pil, fusion_pil
# Blocks.
gr.Markdown(
"""
# GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping
[![Project Site](https://img.shields.io/badge/Project-Web-green)](https://genwarp-nvs.github.io/) &nbsp;
[![Spaces](https://img.shields.io/badge/Spaces-Demo-yellow?logo=huggingface)](https://huggingface.co/spaces/Sony/GenWarp) &nbsp;
[![Github](https://img.shields.io/badge/Github-Repo-orange?logo=github)](https://github.com/sony/genwarp/) &nbsp;
[![Models](https://img.shields.io/badge/Models-checkpoints-blue?logo=huggingface)](https://huggingface.co/Sony/genwarp) &nbsp;
[![arXiv](https://img.shields.io/badge/arXiv-2405.17251-red?logo=arxiv)](https://arxiv.org/abs/2405.17251)
## Introduction
This is an official demo for the paper "[GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping](https://genwarp-nvs.github.io/)". Genwarp can generate novel view images from a single input conditioned on camera poses. In this demo, we offer a basic use of inference of the model. For detailed information, please refer to the [paper](https://arxiv.org/abs/2405.17251).
"""
)
file = gr.File(label='Left', file_types=['image'])
examples = gr.Examples(
examples=['./assets/COCO_val2017_000000070229.jpg',
'./assets/COCO_val2017_000000092839.jpg',
'./assets/KITTI2015_000003_10.png',
'./assets/KITTI2015_000147_10.png'],
inputs=file
)
with gr.Row():
image_widget = gr.Image(
label='Depth', type='filepath',
interactive=False
)
depth_widget = gr.Image(label='Estimated Depth', type='pil')
# Add scale factor slider
scale_slider = gr.Slider(
label='Scale Factor',
minimum=1.0,
maximum=30.0,
value=15.0,
step=0.1,
)
button = gr.Button('Generate a right image', size='lg', variant='primary')
with gr.Row():
warped_widget = gr.Image(
label='Warped Image', type='pil', interactive=False
)
gen_widget = gr.Image(
label='Generated Right', type='pil', interactive=False
)
# Events
file.change(
fn=cb_mde,
inputs=file,
outputs=[image_widget, depth_widget, src_image, src_depth]
)
button.click(
fn=cb_generate,
inputs=[src_image, src_depth, scale_slider],
outputs=[warped_widget, gen_widget]
)
if __name__ == '__main__':
demo.launch()