Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ print(zero.device) # <-- 'cpu' 🤔
|
|
19 |
model_id = 'FINGU-AI/Qwen-Orpo-v1' #attn_implementation="flash_attention_2",
|
20 |
model = AutoModelForCausalLM.from_pretrained(model_id,attn_implementation="sdpa", torch_dtype= torch.bfloat16)
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
-
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
23 |
model.to('cuda')
|
24 |
|
25 |
# terminators = [
|
@@ -44,12 +44,12 @@ def inference(query):
|
|
44 |
]
|
45 |
|
46 |
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
outputs = model.generate(tokenized_chat, **generation_params, streamer=streamer)
|
52 |
-
return outputs
|
53 |
|
54 |
examples = ['How can options strategies such as straddles, strangles, and spreads be used to hedge against market volatility?',
|
55 |
'How do changes in interest rates, inflation, and GDP growth impact stock and bond markets?',
|
|
|
19 |
model_id = 'FINGU-AI/Qwen-Orpo-v1' #attn_implementation="flash_attention_2",
|
20 |
model = AutoModelForCausalLM.from_pretrained(model_id,attn_implementation="sdpa", torch_dtype= torch.bfloat16)
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
+
# streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
23 |
model.to('cuda')
|
24 |
|
25 |
# terminators = [
|
|
|
44 |
]
|
45 |
|
46 |
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
47 |
+
outputs = model.generate(tokenized_chat, **generation_params)
|
48 |
+
decoded_outputs = tokenizer.batch_decode(outputs, skip_specail_tokens=True)
|
49 |
+
assistant_response = decoded_outputs[0].split("<|im_start|>assistant\n")[-1].strip()
|
50 |
+
return assistant_response
|
51 |
+
# outputs = model.generate(tokenized_chat, **generation_params, streamer=streamer)
|
52 |
+
# return outputs
|
53 |
|
54 |
examples = ['How can options strategies such as straddles, strangles, and spreads be used to hedge against market volatility?',
|
55 |
'How do changes in interest rates, inflation, and GDP growth impact stock and bond markets?',
|