File size: 1,761 Bytes
7d244cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
import spaces
import os
import spaces
import torch
import random
import time
import re
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig


# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)

zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' 🤔


model_id = 'FINGU-AI/Finance-OrpoMistral-7B'              #attn_implementation="flash_attention_2",
model = AutoModelForCausalLM.from_pretrained(model_id,attn_implementation="sdpa",  torch_dtype= torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model.to('cuda')

# terminators = [
#     tokenizer.eos_token_id,
#     tokenizer.convert_tokens_to_ids("<|eot_id|>")
# ]

generation_params = {
    'max_new_tokens': 1000,
    'use_cache': True,
    'do_sample': True,
    'temperature': 0.7,
    'top_p': 0.9,
    'top_k': 50,
}

@spaces.GPU
def inference(query):
    messages = [
    {"role": "system", "content": """You are a friendly AI assistant named Grinda, specialized in assisting users with trade, stock-related queries. Your tasks include providing insightful suggestions, tips, and winning trade strategies."""},
    {"role": "user", "content": f"{query}"}, 
]

    tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

    outputs = model.generate(tokenized_chat, **generation_params)
    decoded_outputs = tokenizer.batch_decode(outputs)
    assistant_response = decoded_outputs[0].split("Assistant:")[-1].strip()
    return assistant_response


def response(message, history):
    text = inference(message)
    for i in range(len(text)):
        time.sleep(0.01)
        yield text[: i + 1]
gr.ChatInterface(response).launch()