Spaces:
Runtime error
Runtime error
File size: 2,581 Bytes
7474d35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
# -*- coding: utf-8 -*-
"""Untitled3.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1zwLQmMKCQKLMkJ_5Un4C6V4ajs4LYUOR
"""
"""
!pip install --upgrade typing-extensions -q
!pip install -q gradio --upgrade -q
!pip install keras_nlp -q
"""
from google.colab import drive
drive.mount('/content/drive')
import os
from tensorflow import keras
import keras_nlp
import gradio as gr
import random
import time
os.environ["KERAS_BACKEND"] = "tensorflow" # or "tensorflow" or "torch"
keras.mixed_precision.set_global_policy("mixed_float16")
preprocessor = keras_nlp.models.GPT2CausalLMPreprocessor.from_preset(
"gpt2_large_en",
sequence_length=256,
)
gpt2_lm = keras_nlp.models.GPT2CausalLM.from_preset(
"gpt2_large_en", preprocessor=preprocessor
)
gpt2_lm.load_weights('./drive/MyDrive/checkpoints/my_checkpoint')
css = """
.gradio-container {
background-color: transparent;
color: #f5f5dc;
border-color: #d5aa5e;
}
/* Styling for the chatbot */
.chat{
border-color: #d5aa5e;
background-color:#22201f;
background-image: url('https://github.com/BastienHot/SAE-GPT2/blob/70fb88500a2cc168d71e8ed635fc54492beb6241/image/logo.png');
background-size: cover;
background-position: center;
}
/* Styling for the user */
.user{
background-color: #957d52;
}
/* Styling for the text inside the chatbot */
.gradio-chatbox .message-container .message-right {
color: #f5f5dc; /* Antique white text color */
border-color: #d5aa5e;
background-color: red;
}
.md svelte-1syupzx chatbot{
border-color: #d5aa5e;
background-color: #3e3836;
}
.message user svelte-1lcyrx4 message-bubble-border {
border-color: #3e3836;
}
"""
def predict(text):
# Simulating model prediction
return gpt2_lm.generate(text)
with gr.Blocks(css=css) as demo:
chatbot = gr.Chatbot(elem_classes="chat")
msg = gr.Textbox(elem_classes="user")
clear = gr.ClearButton([msg, chatbot])
def respond(message, chat_history):
bot_message = predict(message)
# Ajouter une classe pour la partie bot_message
bot_message_html = f'<div class="bot-message">{bot_message}</div>'
# Ajouter une classe pour la partie message
user_message_html = f'<div class="user-message">{message}</div>'
chat_history.append((user_message_html, bot_message_html))
time.sleep(2)
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
if __name__ == "__main__":
demo.launch(debug=True, share=True)
|