File size: 5,208 Bytes
cdb159e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import datetime
import random

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import torch
import torch.nn as nn
from absl import app, flags, logging
from loguru import logger
from scipy import stats
from sklearn import metrics, model_selection
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from torch.utils.tensorboard import SummaryWriter

import config
import dataset
import engine
from model import BERTBaseUncased
from utils import categorical_accuracy, label_decoder, label_encoder

matplotlib.rcParams['interactive'] == True

SEED = 42
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True

writer = SummaryWriter()
logger.add("experiment.log")

flags.DEFINE_boolean('features', True, "")
flags.DEFINE_string('test_file', None, "")
flags.DEFINE_string('model_path', None, "")

FLAGS = flags.FLAGS


def main(_):
    test_file = config.DATASET_LOCATION + "eval.prep.test.csv"
    model_path = config.MODEL_PATH
    if FLAGS.test_file:
        test_file = FLAGS.test_file
    if FLAGS.model_path:
        model_path = FLAGS.model_path
    df_test = pd.read_csv(test_file).fillna("none")

    # Commenting as there are no labels
    if FLAGS.features:
        df_test.label = df_test.label.apply(label_encoder)

    logger.info(f"Bert Model: {config.BERT_PATH}")
    logger.info(
        f"Current date and time :{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ")
    logger.info(f"Test file: {test_file}")
    logger.info(f"Test size : {len(df_test):.4f}")

    test_dataset = dataset.BERTDataset(
        review=df_test.text.values,
        target=df_test.label.values
    )

    test_data_loader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=config.VALID_BATCH_SIZE,
        num_workers=3
    )

    device = config.device
    
    model = BERTBaseUncased()
    model.load_state_dict(torch.load(
        model_path, map_location=torch.device(device)))
    model.to(device)

    outputs, extracted_features = engine.predict_fn(
        test_data_loader, model, device, extract_features=FLAGS.features)
    df_test["predicted"] = outputs
    # save file
    df_test.to_csv(model_path.split(
        "/")[-2]+'.csv', header=None, index=False)

    if FLAGS.features:
        pca = PCA(n_components=50, random_state=7)
        X1 = pca.fit_transform(extracted_features)
        tsne = TSNE(n_components=2, perplexity=10, random_state=6,
                    learning_rate=1000, n_iter=1500)
        X1 = tsne.fit_transform(X1)
        # if row == 0: print("Shape after t-SNE: ", X1.shape)

        X = pd.DataFrame(np.concatenate([X1], axis=1),
                         columns=["x1", "y1"])
        X = X.astype({"x1": float, "y1": float})

        # Plot for layer -1
        plt.figure(figsize=(20, 15))
        p1 = sns.scatterplot(x=X["x1"], y=X["y1"], palette="coolwarm")
        # p1.set_title("development-"+str(row+1)+", layer -1")
        x_texts = []
        for output, value in zip(outputs, df_test.label.values):
            if output == value:
                x_texts.append("@"+label_decoder(output)
                               [0] + label_decoder(output))
            else:
                x_texts.append(label_decoder(value) +
                               "-" + label_decoder(output))

        X["texts"] = x_texts
        # X["texts"] = ["@G" + label_decoder(output) if output == value else "@R-" + label_decoder(value) + "-" + label_decoder(output)
        #               for output, value in zip(outputs, df_test.label.values)]

        # df_test.label.astype(str)
        #([str(output)+"-" + str(value)] for output, value in zip(outputs, df_test.label.values))
        # Label each datapoint with the word it corresponds to
        for line in X.index:
            text = X.loc[line, "texts"]+"-"+str(line)
            if "@U" in text:
                p1.text(X.loc[line, "x1"]+0.2, X.loc[line, "y1"], text[2:], horizontalalignment='left',
                        size='medium', color='blue', weight='semibold')
            elif "@P" in text:
                p1.text(X.loc[line, "x1"]+0.2, X.loc[line, "y1"], text[2:], horizontalalignment='left',
                        size='medium', color='green', weight='semibold')
            elif "@N" in text:
                p1.text(X.loc[line, "x1"]+0.2, X.loc[line, "y1"], text[2:], horizontalalignment='left',
                        size='medium', color='red', weight='semibold')
            else:
                p1.text(X.loc[line, "x1"]+0.2, X.loc[line, "y1"], text, horizontalalignment='left',
                        size='medium', color='black', weight='semibold')
        plt.show()
        plt.savefig(model_path.split(
            "/")[-2]+'-figure.svg', format="svg")
        # loocv = model_selection.LeaveOneOut()
        # model = KNeighborsClassifier(n_neighbors=8)
        # results = model_selection.cross_val_score(model, X, Y, cv=loocv)
        # for i, j in outputs, extracted_features:
        #     utils.write_embeddings_to_file(extracted_features, outputs)


if __name__ == "__main__":
    app.run(main)