Update app.py
Browse files
app.py
CHANGED
@@ -9,27 +9,6 @@ import config
|
|
9 |
from transformers import pipeline, AutoTokenizer, AutoModel
|
10 |
import gradio as gr
|
11 |
|
12 |
-
# DEVICE = config.device
|
13 |
-
|
14 |
-
# model = AutoModel.from_pretrained("thak123/bert-emoji-latvian-twitter-classifier")
|
15 |
-
# 7 EPOCH Version
|
16 |
-
# BERT_PATH = "FFZG-cleopatra/bert-emoji-latvian-twitter"
|
17 |
-
|
18 |
-
# tokenizer = transformers.BertTokenizer.from_pretrained(
|
19 |
-
# BERT_PATH,
|
20 |
-
# do_lower_case=True
|
21 |
-
# )
|
22 |
-
#AutoTokenizer.from_pretrained("FFZG-cleopatra/bert-emoji-latvian-twitter")
|
23 |
-
|
24 |
-
# classifier = pipeline("sentiment-analysis",
|
25 |
-
# model= model,
|
26 |
-
# tokenizer = tokenizer)
|
27 |
-
|
28 |
-
# MODEL = BERTBaseUncased()
|
29 |
-
# MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(DEVICE)))
|
30 |
-
# MODEL.eval()
|
31 |
-
|
32 |
-
|
33 |
|
34 |
# T = tokenizer.TweetTokenizer(
|
35 |
# preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False)
|
@@ -58,27 +37,27 @@ def preprocess(text):
|
|
58 |
def sentence_prediction(sentence):
|
59 |
# sentence = preprocess(sentence)
|
60 |
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
|
76 |
model = BERTBaseUncased()
|
77 |
model.load_state_dict(torch.load(
|
78 |
model_path, map_location=torch.device(device)))
|
79 |
model.to(device)
|
80 |
|
81 |
-
outputs, [] = engine.predict_fn(test_data_loader,
|
82 |
|
83 |
outputs = classifier(sentence)
|
84 |
|
|
|
9 |
from transformers import pipeline, AutoTokenizer, AutoModel
|
10 |
import gradio as gr
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# T = tokenizer.TweetTokenizer(
|
14 |
# preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False)
|
|
|
37 |
def sentence_prediction(sentence):
|
38 |
# sentence = preprocess(sentence)
|
39 |
|
40 |
+
model_path = config.MODEL_PATH
|
41 |
|
42 |
+
test_dataset = dataset.BERTDataset(
|
43 |
+
review=[sentence],
|
44 |
+
target=[0]
|
45 |
+
)
|
46 |
|
47 |
+
test_data_loader = torch.utils.data.DataLoader(
|
48 |
+
test_dataset,
|
49 |
+
batch_size=config.VALID_BATCH_SIZE,
|
50 |
+
num_workers=3
|
51 |
+
)
|
52 |
|
53 |
+
device = config.device
|
54 |
|
55 |
model = BERTBaseUncased()
|
56 |
model.load_state_dict(torch.load(
|
57 |
model_path, map_location=torch.device(device)))
|
58 |
model.to(device)
|
59 |
|
60 |
+
outputs, [] = engine.predict_fn(test_data_loader, model, device)
|
61 |
|
62 |
outputs = classifier(sentence)
|
63 |
|