thak123 commited on
Commit
481c6b3
·
1 Parent(s): 155ed73

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -44
app.py CHANGED
@@ -1,11 +1,11 @@
1
  import torch
2
- # from utils import label_full_decoder
3
- # import sys
4
- # import dataset
5
- # import engine
6
- # from model import BERTBaseUncased
7
  # from tokenizer import tokenizer
8
- # import config
9
  from transformers import pipeline, AutoTokenizer, AutoModel
10
  import gradio as gr
11
 
@@ -16,8 +16,9 @@ URL = "https://huggingface.co/FFZG-cleopatra/bert-emoji-latvian-twitter/blob/mai
16
  response = requests.get(URL)
17
  open("pytorch_model.bin", "wb").write(response.content)
18
 
 
19
 
20
- model = AutoModel.from_pretrained("thak123/bert-emoji-latvian-twitter-classifier")
21
  # 7 EPOCH Version
22
  BERT_PATH = "FFZG-cleopatra/bert-emoji-latvian-twitter"
23
 
@@ -27,9 +28,9 @@ tokenizer = transformers.BertTokenizer.from_pretrained(
27
  )
28
  #AutoTokenizer.from_pretrained("FFZG-cleopatra/bert-emoji-latvian-twitter")
29
 
30
- classifier = pipeline("sentiment-analysis",
31
- model= model,
32
- tokenizer = tokenizer)
33
 
34
  # MODEL = BERTBaseUncased()
35
  # MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(DEVICE)))
@@ -63,6 +64,7 @@ def preprocess(text):
63
 
64
  def sentence_prediction(sentence):
65
  # sentence = preprocess(sentence)
 
66
  # model_path = config.MODEL_PATH
67
 
68
  # test_dataset = dataset.BERTDataset(
@@ -79,8 +81,8 @@ def sentence_prediction(sentence):
79
  # device = config.device
80
 
81
  model = BERTBaseUncased()
82
- # model.load_state_dict(torch.load(
83
- # model_path, map_location=torch.device(device)))
84
  model.to(device)
85
 
86
  outputs, [] = engine.predict_fn(test_data_loader, MODEL, device)
@@ -91,39 +93,7 @@ def sentence_prediction(sentence):
91
  return outputs #{"label":outputs[0]}
92
 
93
 
94
-
95
- # demo = gr.Interface(
96
- # fn=sentence_prediction,
97
- # inputs=gr.Textbox(placeholder="Enter a sentence here..."),
98
- # outputs="label",
99
- # interpretation="default",
100
- # examples=[["!"]])
101
-
102
- # demo.launch()
103
-
104
- # gr.Interface(fn=sentence_prediction,inputs="text",outputs="label").launch()
105
-
106
-
107
-
108
- # def greet(name):
109
- # return "Hello " + name + "!"
110
-
111
- # demo = gr.Interface(
112
- # fn=greet,
113
- # inputs=gr.Textbox(lines=2, placeholder="Name Here..."),
114
- # outputs="text",
115
- # )
116
- # demo.launch()
117
-
118
-
119
- # import gradio as gr
120
-
121
- # from transformers import pipeline
122
-
123
- # pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
124
 
125
- def predict(text):
126
- return pipe(text)[0]["translation_text"]
127
 
128
  demo = gr.Interface(
129
  fn=sentence_prediction,
 
1
  import torch
2
+ from utils import label_full_decoder
3
+ import sys
4
+ import dataset
5
+ import engine
6
+ from model import BERTBaseUncased
7
  # from tokenizer import tokenizer
8
+ import config
9
  from transformers import pipeline, AutoTokenizer, AutoModel
10
  import gradio as gr
11
 
 
16
  response = requests.get(URL)
17
  open("pytorch_model.bin", "wb").write(response.content)
18
 
19
+ model_path = "pytorch_model.bin"
20
 
21
+ # model = AutoModel.from_pretrained("thak123/bert-emoji-latvian-twitter-classifier")
22
  # 7 EPOCH Version
23
  BERT_PATH = "FFZG-cleopatra/bert-emoji-latvian-twitter"
24
 
 
28
  )
29
  #AutoTokenizer.from_pretrained("FFZG-cleopatra/bert-emoji-latvian-twitter")
30
 
31
+ # classifier = pipeline("sentiment-analysis",
32
+ # model= model,
33
+ # tokenizer = tokenizer)
34
 
35
  # MODEL = BERTBaseUncased()
36
  # MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(DEVICE)))
 
64
 
65
  def sentence_prediction(sentence):
66
  # sentence = preprocess(sentence)
67
+
68
  # model_path = config.MODEL_PATH
69
 
70
  # test_dataset = dataset.BERTDataset(
 
81
  # device = config.device
82
 
83
  model = BERTBaseUncased()
84
+ model.load_state_dict(torch.load(
85
+ model_path, map_location=torch.device(device)))
86
  model.to(device)
87
 
88
  outputs, [] = engine.predict_fn(test_data_loader, MODEL, device)
 
93
  return outputs #{"label":outputs[0]}
94
 
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
 
 
97
 
98
  demo = gr.Interface(
99
  fn=sentence_prediction,