Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import torch
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
# from tokenizer import tokenizer
|
8 |
-
|
9 |
from transformers import pipeline, AutoTokenizer, AutoModel
|
10 |
import gradio as gr
|
11 |
|
@@ -16,8 +16,9 @@ URL = "https://huggingface.co/FFZG-cleopatra/bert-emoji-latvian-twitter/blob/mai
|
|
16 |
response = requests.get(URL)
|
17 |
open("pytorch_model.bin", "wb").write(response.content)
|
18 |
|
|
|
19 |
|
20 |
-
model = AutoModel.from_pretrained("thak123/bert-emoji-latvian-twitter-classifier")
|
21 |
# 7 EPOCH Version
|
22 |
BERT_PATH = "FFZG-cleopatra/bert-emoji-latvian-twitter"
|
23 |
|
@@ -27,9 +28,9 @@ tokenizer = transformers.BertTokenizer.from_pretrained(
|
|
27 |
)
|
28 |
#AutoTokenizer.from_pretrained("FFZG-cleopatra/bert-emoji-latvian-twitter")
|
29 |
|
30 |
-
classifier = pipeline("sentiment-analysis",
|
31 |
-
|
32 |
-
|
33 |
|
34 |
# MODEL = BERTBaseUncased()
|
35 |
# MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(DEVICE)))
|
@@ -63,6 +64,7 @@ def preprocess(text):
|
|
63 |
|
64 |
def sentence_prediction(sentence):
|
65 |
# sentence = preprocess(sentence)
|
|
|
66 |
# model_path = config.MODEL_PATH
|
67 |
|
68 |
# test_dataset = dataset.BERTDataset(
|
@@ -79,8 +81,8 @@ def sentence_prediction(sentence):
|
|
79 |
# device = config.device
|
80 |
|
81 |
model = BERTBaseUncased()
|
82 |
-
|
83 |
-
|
84 |
model.to(device)
|
85 |
|
86 |
outputs, [] = engine.predict_fn(test_data_loader, MODEL, device)
|
@@ -91,39 +93,7 @@ def sentence_prediction(sentence):
|
|
91 |
return outputs #{"label":outputs[0]}
|
92 |
|
93 |
|
94 |
-
|
95 |
-
# demo = gr.Interface(
|
96 |
-
# fn=sentence_prediction,
|
97 |
-
# inputs=gr.Textbox(placeholder="Enter a sentence here..."),
|
98 |
-
# outputs="label",
|
99 |
-
# interpretation="default",
|
100 |
-
# examples=[["!"]])
|
101 |
-
|
102 |
-
# demo.launch()
|
103 |
-
|
104 |
-
# gr.Interface(fn=sentence_prediction,inputs="text",outputs="label").launch()
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
# def greet(name):
|
109 |
-
# return "Hello " + name + "!"
|
110 |
-
|
111 |
-
# demo = gr.Interface(
|
112 |
-
# fn=greet,
|
113 |
-
# inputs=gr.Textbox(lines=2, placeholder="Name Here..."),
|
114 |
-
# outputs="text",
|
115 |
-
# )
|
116 |
-
# demo.launch()
|
117 |
-
|
118 |
-
|
119 |
-
# import gradio as gr
|
120 |
-
|
121 |
-
# from transformers import pipeline
|
122 |
-
|
123 |
-
# pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
|
124 |
|
125 |
-
def predict(text):
|
126 |
-
return pipe(text)[0]["translation_text"]
|
127 |
|
128 |
demo = gr.Interface(
|
129 |
fn=sentence_prediction,
|
|
|
1 |
import torch
|
2 |
+
from utils import label_full_decoder
|
3 |
+
import sys
|
4 |
+
import dataset
|
5 |
+
import engine
|
6 |
+
from model import BERTBaseUncased
|
7 |
# from tokenizer import tokenizer
|
8 |
+
import config
|
9 |
from transformers import pipeline, AutoTokenizer, AutoModel
|
10 |
import gradio as gr
|
11 |
|
|
|
16 |
response = requests.get(URL)
|
17 |
open("pytorch_model.bin", "wb").write(response.content)
|
18 |
|
19 |
+
model_path = "pytorch_model.bin"
|
20 |
|
21 |
+
# model = AutoModel.from_pretrained("thak123/bert-emoji-latvian-twitter-classifier")
|
22 |
# 7 EPOCH Version
|
23 |
BERT_PATH = "FFZG-cleopatra/bert-emoji-latvian-twitter"
|
24 |
|
|
|
28 |
)
|
29 |
#AutoTokenizer.from_pretrained("FFZG-cleopatra/bert-emoji-latvian-twitter")
|
30 |
|
31 |
+
# classifier = pipeline("sentiment-analysis",
|
32 |
+
# model= model,
|
33 |
+
# tokenizer = tokenizer)
|
34 |
|
35 |
# MODEL = BERTBaseUncased()
|
36 |
# MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(DEVICE)))
|
|
|
64 |
|
65 |
def sentence_prediction(sentence):
|
66 |
# sentence = preprocess(sentence)
|
67 |
+
|
68 |
# model_path = config.MODEL_PATH
|
69 |
|
70 |
# test_dataset = dataset.BERTDataset(
|
|
|
81 |
# device = config.device
|
82 |
|
83 |
model = BERTBaseUncased()
|
84 |
+
model.load_state_dict(torch.load(
|
85 |
+
model_path, map_location=torch.device(device)))
|
86 |
model.to(device)
|
87 |
|
88 |
outputs, [] = engine.predict_fn(test_data_loader, MODEL, device)
|
|
|
93 |
return outputs #{"label":outputs[0]}
|
94 |
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
|
|
|
|
97 |
|
98 |
demo = gr.Interface(
|
99 |
fn=sentence_prediction,
|