File size: 3,953 Bytes
3e1334e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241abc0
337c718
 
 
3e1334e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
import torch.nn as nn
from tqdm import tqdm
from utils import categorical_accuracy


def loss_fn(outputs, targets):
    return nn.CrossEntropyLoss()(outputs, targets)


def train_fn(data_loader, model, optimizer, device, scheduler):
    model.train()
    train_loss, train_acc = 0.0, 0.0

    for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)):
        ids = d["ids"]
        token_type_ids = d["token_type_ids"]
        mask = d["mask"]
        targets = d["targets"]

        ids = ids.to(device, dtype=torch.long)
        token_type_ids = token_type_ids.to(device, dtype=torch.long)
        mask = mask.to(device, dtype=torch.long)
        targets = targets.to(device, dtype=torch.long)
        
        optimizer.zero_grad()
        outputs = model(
            ids=ids,
            mask=mask,
            token_type_ids=token_type_ids
        )

        loss = loss_fn(outputs, targets)
        loss.backward()
        
        optimizer.step()
        scheduler.step()
        train_loss += loss.item()
        pred_labels = torch.argmax(outputs, dim=1)
        # (pred_labels == targets).sum().item()
        train_acc += categorical_accuracy(outputs, targets).item()

    train_loss /= len(data_loader)
    train_acc /= len(data_loader)
    return train_loss, train_acc


def eval_fn(data_loader, model, device):
    model.eval()
    eval_loss, eval_acc = 0.0, 0.0
    fin_targets = []
    fin_outputs = []
    with torch.no_grad():
        for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)):
            ids = d["ids"]
            token_type_ids = d["token_type_ids"]
            mask = d["mask"]
            targets = d["targets"]

            ids = ids.to(device, dtype=torch.long)
            token_type_ids = token_type_ids.to(device, dtype=torch.long)
            mask = mask.to(device, dtype=torch.long)
            targets = targets.to(device, dtype=torch.long)

            outputs = model(
                ids=ids,
                mask=mask,
                token_type_ids=token_type_ids
            )
            loss = loss_fn(outputs, targets)
            eval_loss += loss.item()
            pred_labels = torch.argmax(outputs, axis=1)
            # (pred_labels == targets).sum().item()
            eval_acc += categorical_accuracy(outputs, targets).item()
            fin_targets.extend(targets.cpu().detach().numpy().tolist())
            fin_outputs.extend(torch.argmax(
                outputs, dim=1).cpu().detach().numpy().tolist())
    eval_loss /= len(data_loader)
    eval_acc /= len(data_loader)
    return fin_outputs, fin_targets, eval_loss, eval_acc



def predict_fn(data_loader, model, device, extract_features=False):
    model.eval()
   
    fin_outputs = []
    extracted_features =[]
    with torch.no_grad():
        for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)):
            ids = d["ids"]
            token_type_ids = d["token_type_ids"]
            mask = d["mask"]
            # targets = d["targets"]

            ids = ids.to(device, dtype=torch.long)
            token_type_ids = token_type_ids.to(device, dtype=torch.long)
            mask = mask.to(device, dtype=torch.long)
            
            outputs = model(
                ids=ids,
                mask=mask,
                token_type_ids=token_type_ids
            )
            if extract_features:
                extracted_features.extend( model.extract_features(
                ids=ids,
                mask=mask,
                token_type_ids=token_type_ids
            ).cpu().detach().numpy().tolist())  
            print("0",outputs)
            print("1",torch.argmax(outputs, dim=1))
            print("2",torch.argmax(outputs, dim=1).cpu())
            print("3",torch.argmax(outputs, dim=1).cpu().numpy())
            fin_outputs.extend(torch.argmax(
                outputs, dim=1).cpu().detach().numpy().tolist())

    return fin_outputs, extracted_features