Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,28 +2,28 @@ import datasets
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
import transformers
|
| 5 |
-
from config import epochs, batch_size, learning_rate
|
| 6 |
from model import tokenizer, multitask_model
|
| 7 |
from mtm import MultitaskTrainer, NLPDataCollator, DataLoaderWithTaskname
|
| 8 |
import pandas as pd
|
| 9 |
from datasets import Dataset, DatasetDict
|
| 10 |
from data_predict import convert_to_stsb_features,convert_to_features
|
| 11 |
-
|
| 12 |
from huggingface_hub import hf_hub_download,snapshot_download
|
| 13 |
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
# df_document_croatian_test = df_document_croatian_test[["content"]]
|
| 21 |
-
def predict():
|
| 22 |
# gather everyone if you want to have a single DatasetDict
|
| 23 |
document = DatasetDict({
|
| 24 |
# "train": Dataset.from_pandas(df_document_sl_hr_train),
|
| 25 |
# "valid": Dataset.from_pandas(df_document_sl_hr_valid),
|
| 26 |
-
"test": Dataset.from_dict({"content":[
|
| 27 |
})
|
| 28 |
|
| 29 |
dataset_dict = {
|
|
@@ -45,81 +45,33 @@ def predict():
|
|
| 45 |
features_dict = convert_to_features(dataset_dict, convert_func_dict)
|
| 46 |
|
| 47 |
return features_dict
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
batch[key] = batch[key].to(device)
|
| 63 |
-
|
| 64 |
-
task_model = multitask_model.get_model("document")
|
| 65 |
-
classifier_output = task_model.forward(
|
| 66 |
-
torch.unsqueeze(batch["input_ids"], 0),
|
| 67 |
-
torch.unsqueeze(batch["attention_mask"], 0),)
|
| 68 |
|
| 69 |
-
print(
|
| 70 |
-
|
| 71 |
-
predictions.append(prediction.indices.item())
|
| 72 |
|
| 73 |
-
print("p:", predictions)
|
| 74 |
-
# pd.DataFrame({"original_predictions":predictions}).to_csv("eacl_slavic.tsv")
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
do_train=False,
|
| 83 |
-
do_eval=True,
|
| 84 |
-
# evaluation_strategy ="steps",
|
| 85 |
-
# num_train_epochs=epochs,
|
| 86 |
-
# fp16=True,
|
| 87 |
-
# Adjust batch size if this doesn't fit on the Colab GPU
|
| 88 |
-
per_device_train_batch_size=batch_size,
|
| 89 |
-
per_device_eval_batch_size=batch_size,
|
| 90 |
-
save_steps=3000,
|
| 91 |
-
# eval_steps=50,
|
| 92 |
-
load_best_model_at_end=True,
|
| 93 |
-
|
| 94 |
-
),
|
| 95 |
-
data_collator=NLPDataCollator(tokenizer=tokenizer),
|
| 96 |
-
callbacks=[],
|
| 97 |
-
|
| 98 |
)
|
| 99 |
-
print(features_dict["document"]["test"])
|
| 100 |
-
tests_dict = {}
|
| 101 |
-
for task_name in ["document"]: # "paragraph", "sentence"
|
| 102 |
-
test_dataloader = DataLoaderWithTaskname(
|
| 103 |
-
task_name,
|
| 104 |
-
trainer.get_eval_dataloader(features_dict[task_name]["test"])
|
| 105 |
-
)
|
| 106 |
-
print(len(trainer.get_eval_dataloader(features_dict[task_name]["test"])))
|
| 107 |
-
print(test_dataloader.data_loader.collate_fn)
|
| 108 |
-
print(len(test_dataloader.data_loader))
|
| 109 |
-
tests_dict[task_name] = trainer.prediction_loop(
|
| 110 |
-
test_dataloader,
|
| 111 |
-
description=f"Testing: {task_name}"
|
| 112 |
-
)
|
| 113 |
-
print(tests_dict)
|
| 114 |
-
for task_name in ["document", ]: #"paragraph","sentence"
|
| 115 |
-
for metric in ["precision", "recall", "f1"]:
|
| 116 |
-
print("test {} {}:".format(metric, task_name),
|
| 117 |
-
datasets.load_metric(metric,
|
| 118 |
-
name="dev {} {}".format(metric, task_name)).compute(
|
| 119 |
-
predictions=np.argmax(
|
| 120 |
-
tests_dict[task_name].predictions, axis=1),
|
| 121 |
-
references=tests_dict[task_name].label_ids, average="macro"
|
| 122 |
-
))
|
| 123 |
-
print()
|
| 124 |
|
| 125 |
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
import transformers
|
| 5 |
+
from config import epochs, batch_size, learning_rate, id2label
|
| 6 |
from model import tokenizer, multitask_model
|
| 7 |
from mtm import MultitaskTrainer, NLPDataCollator, DataLoaderWithTaskname
|
| 8 |
import pandas as pd
|
| 9 |
from datasets import Dataset, DatasetDict
|
| 10 |
from data_predict import convert_to_stsb_features,convert_to_features
|
| 11 |
+
import gradio as gr
|
| 12 |
from huggingface_hub import hf_hub_download,snapshot_download
|
| 13 |
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
|
| 16 |
+
model_link = hf_hub_download(repo_id="FFZG-cleopatra/Croatian-News-Classifier",filename = "pytorch_model.bin")
|
| 17 |
+
|
| 18 |
+
multitask_model.load_state_dict(torch.load(model_link, map_location=device))
|
| 19 |
+
multitask_model.to(device)
|
| 20 |
|
| 21 |
+
def predict(sentence = "Volim ti"):
|
|
|
|
|
|
|
| 22 |
# gather everyone if you want to have a single DatasetDict
|
| 23 |
document = DatasetDict({
|
| 24 |
# "train": Dataset.from_pandas(df_document_sl_hr_train),
|
| 25 |
# "valid": Dataset.from_pandas(df_document_sl_hr_valid),
|
| 26 |
+
"test": Dataset.from_dict({"content":[sentence]})
|
| 27 |
})
|
| 28 |
|
| 29 |
dataset_dict = {
|
|
|
|
| 45 |
features_dict = convert_to_features(dataset_dict, convert_func_dict)
|
| 46 |
|
| 47 |
return features_dict
|
| 48 |
+
predictions = []
|
| 49 |
+
features_dict = predict()
|
| 50 |
+
for _, batch in enumerate(features_dict["document"]['test']):
|
| 51 |
+
for key, value in batch.items():
|
| 52 |
+
batch[key] = batch[key].to(device)
|
| 53 |
+
|
| 54 |
+
task_model = multitask_model.get_model("document")
|
| 55 |
+
classifier_output = task_model.forward(
|
| 56 |
+
torch.unsqueeze(batch["input_ids"], 0),
|
| 57 |
+
torch.unsqueeze(batch["attention_mask"], 0),)
|
| 58 |
+
|
| 59 |
+
print(tokenizer.decode(batch["input_ids"],skip_special_tokens=True))
|
| 60 |
+
prediction =torch.max(classifier_output.logits, axis=1)
|
| 61 |
+
predictions.append(prediction.indices.item())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
print("p:", predictions[0] , id2label[predictions[0]] )
|
| 64 |
+
return id2label[predictions[0]]
|
|
|
|
| 65 |
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
interface = gr.Interface(
|
| 68 |
+
fn=get_sentiment,
|
| 69 |
+
inputs='text',
|
| 70 |
+
outputs=['text', 'label'],
|
| 71 |
+
title='Sentiment Analysis',
|
| 72 |
+
description='Get the positive/neutral/negative sentiment for the given input.'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
+
interface.launch(inline = False)
|
| 77 |
+
|